
ModelArts

Inference Deployment

Issue 01

Date 2024-06-07

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Introduction to Inference...1

2 Managing AI Applications... 3
2.1 Introduction to AI Application Management...3
2.2 Creating an AI Application... 5
2.2.1 Importing a Meta Model from a Training Job... 5
2.2.2 Importing a Meta Model from OBS.. 7
2.2.3 Importing a Meta Model from a Container Image... 10
2.3 Viewing Details About an AI Application... 14
2.4 Managing AI Applications..16
2.5 Viewing Events of an AI Application.. 16

3 Deploying an AI Application as a Service..21
3.1 Deploying AI Applications as Real-Time Services.. 21
3.1.1 Deploying as a Real-Time Service... 21
3.1.2 Viewing Service Details... 25
3.1.3 Testing the Deployed Service.. 31
3.1.4 Accessing Real-Time Services.. 32
3.1.4.1 Accessing a Real-Time Service...32
3.1.4.2 Authentication Mode.. 33
3.1.4.2.1 Access Authenticated Using a Token... 33
3.1.4.3 Access Mode.. 36
3.1.4.3.1 Accessing a Real-Time Service (Public Network Channel)...36
3.1.4.3.2 Accessing a Real-Time Service (VPC Channel)... 36
3.1.4.3.3 Accessing a Real-Time Service (VPC High-Speed Channel).. 39
3.1.5 Maintaining Real-Time Services... 44
3.1.5.1 Scaling..44
3.1.5.1.1 Overview.. 44
3.1.5.1.2 Manual Scaling.. 44
3.1.5.1.3 Auto Scaling... 45
3.2 Deploying AI Applications as Batch Services...49
3.2.1 Deploying as a Batch Service.. 49
3.2.2 Viewing the Batch Service Prediction Result..53
3.3 Upgrading a Service... 54

ModelArts
Inference Deployment Contents

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. iii

3.4 Starting, Stopping, Deleting, or Restarting a Service... 56
3.5 Viewing Service Events..57

4 Inference Specifications... 61
4.1 Model Package Specifications.. 61
4.1.1 Introduction to Model Package Specifications.. 61
4.1.2 Specifications for Editing a Model Configuration File ... 63
4.1.3 Specifications for Writing Model Inference Code ... 79
4.2 Examples of Custom Scripts.. 84
4.2.1 TensorFlow... 84
4.2.2 PyTorch.. 90
4.2.3 XGBoost.. 93
4.2.4 PySpark... 94
4.2.5 Scikit-learn... 96

5 ModelArts Monitoring on Cloud Eye.. 98
5.1 ModelArts Metrics.. 98
5.2 Setting Alarm Rules... 100
5.3 Viewing Monitoring Metrics... 104

ModelArts
Inference Deployment Contents

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. iv

1 Introduction to Inference

After an AI model is developed, you can use it to create an AI application and
quickly deploy the application as an inference service. The AI inference capabilities
can be integrated into your IT platform by calling APIs.

Figure 1-1 Inference

● Develop a model: Models can be developed in ModelArts or your local
development environment. A locally developed model must be uploaded to
OBS.

● Create an AI application: Import the model file and inference file to the
ModelArts model repository and manage them by version. Use these files to
build an executable AI application.

● Deploy as a service: Deploy the AI application as a container instance in the
resource pool and register inference APIs that can be accessed externally.

● Perform inference: Add the function of calling the inference APIs to your
application to integrate AI inference into the service process.

Deploying an AI Application as a Service
After an AI application is created, you can deploy it as a service on the Deploy
page. ModelArts supports the following deployment types:
● Real-time service

Deploy an AI application as a web service with real-time test UI and
monitoring supported.

ModelArts
Inference Deployment 1 Introduction to Inference

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 1

● Batch service
Deploy an AI application as a batch service that performs inference on batch
data and automatically stops after data processing is complete.

ModelArts
Inference Deployment 1 Introduction to Inference

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 2

2 Managing AI Applications

2.1 Introduction to AI Application Management
AI development and optimization require frequent iterations and debugging.
Modifications in datasets, training code, or parameters affect the quality of
models. If the metadata of the development process cannot be centrally managed,
the optimal model may fail to be reproduced.

ModelArts AI application management allows you to import all meta models
obtained through training, meta models uploaded to OBS, and meta models in
container images. In this way, you can centrally manage all iterated and debugged
AI applications.

Constraints
● In an ExeML project, after a model is deployed, the model is automatically

uploaded to the AI application management list. However, AI applications
generated by ExeML cannot be downloaded and can be used only for
deployment and rollout.

Scenarios for Creating AI Applications
● Imported from a training job: Create a training job in ModelArts and train a

model. After obtaining a satisfactory model, use it to create an AI application
and deploy the application as services.

● Imported from OBS: If you use a mainstream framework to develop and train
a model locally, you can upload the model to an OBS bucket based on the
model package specifications, import the model from OBS to ModelArts, and
use the model to create an AI application for service deployment.

● Imported from a container image: If an AI engine is not supported by
ModelArts, you can use it to build a model, import the model to ModelArts as
a custom image, use the image to create an AI application, and deploy the AI
application as services.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 3

Functions of AI Application Management

Table 2-1 Functions of AI application management

Supported
Function

Description

Creating an AI
Application

Import the trained models to ModelArts and create AI
applications for centralized management. The following
provides the operation guide for each method of importing
models.
● Importing a Meta Model from a Training Job
● Importing a Meta Model from OBS
● Importing a Meta Model from a Container Image

Viewing Details
About an AI
Application

After an AI application is created, you can view its
information on the details page.

Managing AI
Applications

To facilitate traceback and model tuning, ModelArts
provides the AI application version management function.
You can manage AI applications by version.

Supported AI Engines for ModelArts Inference
If you import a model from a template or OBS to create an AI application, the
following AI engines and versions are supported.

NO TE

● Runtime environments marked with recommended are unified runtime images, which
will be used as mainstream base inference images.

● Images of the old version will be discontinued. Use unified images.
● The base images to be removed are no longer maintained.
● Naming a unified runtime image: <AI engine name and version> - <Hardware and

version: CPU, CUDA, or CANN> - <Python version> - <OS version> - <CPU architecture>

Table 2-2 Supported AI engines and their runtime

Engine Runtime Note

TensorFlow tf1.13-python3.7-cpu
tf1.13-python3.7-gpu
tensorflow_2.1.0-
cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

● For other runtime values, if the
suffix contains cpu or gpu, the
model can run only on CPUs or
GPUs.

● The default runtime is
tensorflow_2.1.0-cuda_10.1-
py_3.7-ubuntu_18.04-x86_64.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 4

Engine Runtime Note

Spark_MLlib python2.7
python3.6

● Spark_MLlib 2.3.2 is used in
python2.7 and python3.6.

● python3.6 can only be used to run
models on CPUs.

Scikit_Learn python2.7
python3.6

● Scikit_Learn 0.18.1 is used in
python2.7 and python3.6.

● python3.6 can only be used to run
models on CPUs.

XGBoost python2.7
python3.6

● XGBoost 0.80 is used in python2.7
and python3.6.

● python3.6 can only be used to run
models on CPUs.

PyTorch python3.7
pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

● python3.7 indicate that the model
can run on both CPUs and GPUs.

● The default runtime is
pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64.

2.2 Creating an AI Application

2.2.1 Importing a Meta Model from a Training Job
You can create a training job in ModelArts to obtain a satisfactory model. Then,
you can import the model to AI Application Management for centralized
management. In addition, you can quickly deploy the model as a service.

Constraints
● A model generated from a training job that uses subscribed algorithms can be

directly imported to ModelArts without the need to use the inference code or
configuration file.

● ModelArts of the Arm architecture does not support model import from
training.

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing an
AI Application.

Prerequisites
● The training job has been successfully executed, and the model has been

stored in the OBS directory where the training output is stored (the input
parameter is train_url).

● If a model is generated from a training job that uses a frequently-used
framework or custom image, upload the inference code and configuration file

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 5

https://support.huaweicloud.com/eu/modelarts_faq/modelarts_13_0211.html
https://support.huaweicloud.com/eu/modelarts_faq/modelarts_13_0211.html

to the storage directory of the model by referring to Introduction to Model
Package Specifications.

● The OBS directory you use and ModelArts are in the same region.

Creating an AI Application
1. Log in to the ModelArts management console and choose AI Application

Management > AI Applications in the left navigation pane. The AI
Applications page is displayed.

2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 2-3.

Table 2-3 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to Training job. For details about the parameters, see
Table 2-4.

Table 2-4 Parameters of the meta model source

Parameter Description

Meta
Model
Source

Choose Training Job > Training Jobs or Training Job >
Training Jobs (New).
● Select a training job that has completed training under

the current account and a training version from the
drop-down lists on the right of Training Job and
Version respectively.

AI Engine Inference engine used by the meta model. The engine is
automatically matched based on the training job you
select.

Runtime
Dependenc
y

List the dependencies of the selected model in the
environment.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 6

Parameter Description

AI
Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use your
applications. Click Add AI Application Description and
set the Document name and URL. A maximum of three
AI application descriptions are supported.

Deploymen
t Type

Select the service types that the application can be
deployed. When deploying a service, only the service
types selected here are available. For example, if you only
select Real-time services here, you can only deploy the
AI application as a real-time service after it is created.

c. Confirm the configurations and click Create now. The AI application is

created.
In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure
Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at
the bottom of the list page. Locate the row that contains the target version, click
Deploy in the Operation column to deploy the AI application as a deployment
type selected during AI application creation.

2.2.2 Importing a Meta Model from OBS
In scenarios where frequently-used frameworks are used for model development
and training, you can import the model to ModelArts and use it to create an AI
application for unified management.

Constraints
● The imported model for creating an AI application, inference code, and

configuration file must comply with the requirements of ModelArts. For
details, see Introduction to Model Package Specifications, Specifications
for Editing a Model Configuration File , and Specifications for Writing
Model Inference Code .

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing an
AI Application.

Prerequisites
● The model has been developed and trained, and the type and version of the

AI engine used by the model are supported by ModelArts. For details, see
Supported AI Engines for ModelArts Inference.

● The trained model package, inference code, and configuration file have been
uploaded to OBS.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 7

https://support.huaweicloud.com/eu/modelarts_faq/modelarts_13_0211.html
https://support.huaweicloud.com/eu/modelarts_faq/modelarts_13_0211.html

● The OBS directory you use and ModelArts are in the same region.

Creating an AI Application
1. Log in to the ModelArts management console, and choose AI Application

Management > AI Applications in the left navigation pane. The AI
Applications page is displayed.

2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 2-5.

Table 2-5 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to OBS. For details about the parameters, see Table 2-6.
For the meta model imported from OBS, edit the inference code and
configuration files by following model package specifications and place
the inference code and configuration files in the model folder storing the
meta model. If the selected directory does not comply with the model
package specifications, the AI application cannot be created.

Table 2-6 Parameters of the meta model source

Parameter Description

Meta
Model

OBS path for storing the meta model.
The OBS path cannot contain spaces. Otherwise, the AI
application fails to be created.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 8

Parameter Description

AI Engine The AI engine automatically associates with the meta
model storage path you select.
If you set AI Engine to Custom, set the following
parameters:
● Container API: Protocol and port number for starting

a model. The request protocol is HTTPS, and the port
number is 8080.

● Health Check: checks health status of a model. This
parameter is configurable only when the health check
API is configured in the custom image. Otherwise, the
AI application deployment will fail.
– Check Mode: Select HTTP request or Command.
– Health Check URL: This parameter is displayed

when Check Mode is set to HTTP request. Enter
the health check URL. The default value is /health.

– Health Check Command: This parameter is
displayed when Check Mode is set to Command.
Enter the health check command.

– Health Check Period: Enter an integer ranging
from 1 to 2147483647. The unit is second.

– Delay(seconds): specifies the delay for
performing the health check after the instance is
started. Enter an integer ranging from 0 to
2147483647.

– Maximum Failures: Enter an integer ranging from
1 to 2147483647. During service startup, if the
number of consecutive health check failures
reaches the specified value, the service will be
abnormal. During service running, if the number of
consecutive health check failures reaches the
specified value, the service will enter the alarm
status.

NOTE
To use a custom engine to create an AI application, ensure
that the custom engine complies with the specifications for
custom engines. For details, see Creating an AI Application
Using a Custom Engine.
If health check is configured for an AI application, the
deployed services using this AI application will stop 3 minutes
after receiving the stop instruction.

AI
Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use your
applications. Click Add AI Application Description and
set the Document name and URL. You can add up to
three AI application descriptions.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 9

https://support.huaweicloud.com/eu/bestpractice-modelarts/modelarts_04_0230.html
https://support.huaweicloud.com/eu/bestpractice-modelarts/modelarts_04_0230.html

Parameter Description

Configurati
on File

By default, the system associates the configuration file
stored in OBS. After enabling this function, you can view
and edit the model configuration file.
NOTE

This function is to be taken offline. After that, you can modify
the model configuration by setting AI Engine, Runtime
Dependency, and Apis.

Deploymen
t Type

Select the service types that the application can be
deployed. When deploying a service, only the service
types selected here are available. For example, if you only
select Real-time services here, you can only deploy the
AI application as a real-time service after it is created.

API
Configurati
on

After enabling this function, you can edit RESTful APIs to
define the input and output formats of an AI application.
The model APIs must comply with ModelArts
specifications. For details, see Specifications for Editing
a Model Configuration File. For details about the code
example, see Code Example of apis Parameters.

c. Check the information and click Create now. The AI application is
created.

In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure

Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at
the bottom of the list page. Locate the row that contains the target version, click
Deploy in the Operation column to deploy the AI application as a deployment
type selected during AI application creation.

2.2.3 Importing a Meta Model from a Container Image
For AI engines that are not supported by ModelArts, you can import the models
you compile to ModelArts from custom images.

Constraints
● For details about the specifications and description of custom images, see

Custom Image Specifications for Creating AI Applications.

● The configuration file must be provided for a model that you have developed
and trained. The file must comply with ModelArts specifications. For details,
see Specifications for Editing a Model Configuration File . After the writing
is completed, upload the file to the specified OBS directory.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 10

https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing an
AI Application.

Prerequisites
The OBS directory you use and ModelArts are in the same region.

Creating an AI Application
1. Log in to the ModelArts management console, and choose AI Application

Management > AI Applications in the left navigation pane. The AI
Applications page is displayed.

2. Click Create in the upper left corner.
3. On the displayed page, set the parameters.

a. Set basic information about the AI application. For details about the
parameters, see Table 2-7.

Table 2-7 Parameters of basic AI application information

Parameter Description

Name Application name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Version of the AI application to be created. For the first
import, the default value is 0.0.1.
NOTE

After an AI application is created, you can create new versions
using different meta models for optimization.

Description Brief description of an AI application

b. Select the meta model source and set related parameters. Set Meta

Model Source to Container image. For details about the parameters, see
Table 2-8.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 11

https://support.huaweicloud.com/eu/modelarts_faq/modelarts_13_0211.html
https://support.huaweicloud.com/eu/modelarts_faq/modelarts_13_0211.html

Table 2-8 Parameters of the meta model source

Parameter Description

Container Image
Path Click to import the model image from the

container image. The model is of the Image type,
and you do not need to use swr_location in the
configuration file to specify the image location.
For details about operation guidance and
requirements for creating a custom image, see
Custom Image Specifications for Creating AI
Applications.
NOTE

The model image you select will be shared with the
system administrator, so ensure you have the permission
to share the image (images shared with other accounts
are unsupported). When you deploy a service, ModelArts
deploys the image as an inference service. Ensure that
your image can be properly started and provide an
inference interface.

Image
Replication

Indicates whether to copy the model image in the
container image to ModelArts.
● When this function is disabled, the model image

is not copied, AI applications can be created
quickly, but modifying or deleting images in the
source directory of SWR may affect service
deployment.

● When this function is enabled, the model image
is copied, AI applications cannot be created
quickly, but you can modify or delete images in
the source directory of SWR as that would not
affect service deployment.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 12

https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html

Parameter Description

Health Check Health check on an AI application. This parameter is
configurable only when the health check API is
configured in the custom image. Otherwise, the AI
application deployment will fail.
● Check Mode: Select HTTP request or

Command.
● Health Check URL: This parameter is displayed

when Check Mode is set to HTTP request. Enter
the health check URL. The default value is /
health.

● Health Check Command: This parameter is
displayed when Check Mode is set to
Command. Enter the health check command.

● Health Check Period: Enter an integer ranging
from 1 to 2147483647. The unit is second.

● Delay(seconds): specifies the delay for
performing the health check after the instance is
started. Enter an integer ranging from 0 to
2147483647.

● Maximum Failures: Enter an integer ranging
from 1 to 2147483647. During service startup, if
the number of consecutive health check failures
reaches the specified value, the service will be
abnormal. During service running, if the number
of consecutive health check failures reaches the
specified value, the service will enter the alarm
status.

NOTE
If health check is configured for an AI application, the
deployed services using this AI application will stop 3
minutes after receiving the stop instruction.

AI Application
Description

Provide AI application descriptions to help other AI
application developers better understand and use
your applications. Click Add AI Application
Description and set the Document name and URL.
You can add up to three AI application descriptions.

Deployment
Type

Select the service types that the application can be
deployed. When deploying a service, only the
service types selected here are available. For
example, if you only select Real-time services here,
you can only deploy the AI application as a real-
time service after it is created.

Start command Customizable start command of a model

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 13

Parameter Description

API
Configuration

When you enable this function, you can edit
RESTful APIs to define the AI application input and
output formats. The model APIs must comply with
ModelArts specifications. For details, see
Specifications for Editing a Model Configuration
File. For details about the code example, see Code
Example of apis Parameters.

c. Check the information and click Next. The AI application is created.

In the AI application list, you can view the created AI application and its
version. When the status changes to Normal, the AI application is
successfully created. On this page, you can perform such operations as
creating new versions and quickly deploying services.

Follow-Up Procedure

Deploying an AI Application as a Service: In the AI application list, click the
option button on the left of the AI application name to display the version list at
the bottom of the list page. Locate the row that contains the target version, click
Deploy in the Operation column to deploy the AI application as a deployment
type selected during AI application creation.

2.3 Viewing Details About an AI Application
After an AI application is created, you can view its information on the details page.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose AI Application Management > AI Applications. The AI
Applications page is displayed.

2. Click the name of the target AI application. The application details page is
displayed.

On the application details page, you can view the basic information and
model precision of the AI application, and switch tab pages to view more
information.

Table 2-9 Basic information about an AI application

Parameter Description

Name Name of an AI application

Status Status of an AI application

Version Current version of an AI application

ID ID of an AI application

Size Size of an AI application

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 14

Parameter Description

Runtime
Environment

Runtime environment on which the meta model
depends

Meta Model
Source

Path to the meta model

AI Engine AI engine used by an AI application

Deployment Type Types of the services that an AI application can be
deployed

Model Source Source of a model, which can be ExeML, built-in
algorithm, or custom algorithm

Inference Code Path to the inference code

Description Click the edit button to add the description of an AI
application.

AI Application
Description

Description document added during the creation of an
AI application

Associated
Training Job

Associated training job if the meta model comes from a
training job. Click the training job name to go to its
details page.

Table 2-10 Details page of an AI application

Parameter Description

Model Precision Model recall, precision, accuracy, and F1 score of an AI
application

Parameter
Configuration

API configuration, input parameters, and output
parameters of an AI application

Runtime
Dependency

Model dependency on the environment. If creating a
job failed, edit the runtime dependency. After the
modification is saved, the system will automatically use
the original image to create the job again.

Events The progress of key operations during AI application
creation
Events are stored for three months and will be
automatically cleared then.
For details about how to view events of an AI
application, see Viewing Events of an AI Application.

Constraint Constraints on deployment, such as the API request
mode, deployed system architecture, and supported
acceleration card types

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 15

Parameter Description

Associated
Services

The list of services that an AI application was deployed.
Click a service name to go to the service details page.

2.4 Managing AI Applications
To facilitate source tracing and repeated AI application tuning, ModelArts provides
the AI application version management function. You can manage models based
on versions.

Prerequisites
An AI application has been created in ModelArts.

Creating a New Version
On the AI Application Management > AI Applications page, click Create
Version in the Operation column of the target AI application. On the Create
Version page, set the parameters. For details, see Creating an AI Application.
Click Create now.

Deleting a Version
On the AI Application Management > AI Applications page, click the option
button on the left of the AI application name to display the application version
list. In the application version list, click Delete in the Operation column to delete
the corresponding version.

NO TE

If a service has been deployed for the AI application version, you need to delete the
associated service before deleting the AI application version. A deleted version cannot be
recovered. Exercise caution when performing this operation.

Deleting an AI Application
In the navigation pane, choose AI Application Management > AI Applications.
On the AI Applications page, click Delete in the Operation column to delete the
target AI application.

NO TE

If a service has been deployed for the AI application version, you need to delete the
associated service before deleting the AI application version. A deleted AI application
cannot be recovered. Exercise caution when performing this operation.

2.5 Viewing Events of an AI Application
During the creation of an AI application, every key event is automatically recorded.
You can view the events on the details page of the AI application at any time.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 16

This helps you better understand the process of creating an AI application and
locate faults more accurately when a task exception occurs. The following table
lists the available events.

Type Event (xxx should be replaced with
the actual value.)

Solution

Normal The model starts to import. -

Abnormal Failed to create the image. Locate and rectify
the fault based on
the error
information. FAQs

Abnormal The custom image does not support
specified dependencies.

The runtime
dependencies cannot
be configured when
a custom image is
imported. Install the
pip dependency
package in the
Dockerfile that is
used to create the
image. FAQs

Abnormal Only custom images support
swr_location.

Delete the
swr_location field
from the model
configuration file
config.json and try
again.

Abnormal The health check API of a custom
image must be xxx.

Modify the health
check API of the
custom image and
try again.

Normal The image creation task is in the xxx
state.

-

Abnormal Label xxx does not exist in image xxx. Contact technical
support.

Abnormal Invalid parameter value xxx exists in
the model configuration file.

Delete invalid
parameters from the
model configuration
file and try again.

Abnormal Failed to obtain the labels of image
xxx.

Contact technical
support.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 17

https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0206.html
https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0243.html

Abnormal Failed to import data because xxx is
larger than xxx GB.

The size of the
model or image
exceeds the upper
limit. Downsize the
model or image and
import it again.
FAQs

Abnormal User xxx does not have OBS
permission obs:object:PutObjectAcl.

The IAM user does
not have the
obs:object:PutObject
Acl permission on
OBS. Add the agency
permission for the
IAM user. FAQs

Abnormal Creating the image timed out. The
timeout duration is xxx minutes.

There is a timeout
limit for image
building using
ImagePacker.
Simplify the code to
improve efficiency.
FAQs

Normal Model description updated. -

Normal Model runtime dependencies not
updated.

-

Normal Model runtime dependencies
updated. Recreating the image.

-

Abnormal SWR traffic control triggered. Try
again later.

SWR traffic control
triggered. Try again
later.

Normal The system is being upgraded. Try
again later.

-

Abnormal Failed to obtain the source image. An
error occurred in authentication. The
token has expired.

Contact technical
support.

Abnormal Failed to obtain the source image.
Check whether the image exists.

Contact technical
support.

Normal Source image size calculated. -

Normal Source image shared. -

Abnormal Failed to create the image due to
traffic control. Try again later.

Traffic control
triggered. Try again
later.

Abnormal Failed to send the image creation
request.

Contact technical
support.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 18

https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0257.html
https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0206.html
https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0262.html

Abnormal Failed to share the source image.
Check whether the image exists or
whether you have the permission to
share the image.

Check whether the
image exists or
whether you have
the permission to
share the image.

Normal The model imported. -

Normal Model file imported. -

Normal Model size calculated. -

Abnormal Failed to import the model. For details about
how to locate and
rectify the fault, see
FAQs.

Abnormal Failed to copy the model file. Check
whether you have the OBS
permission.

Check whether you
have the OBS
permission. FAQs

Abnormal Failed to schedule the image creation
task.

Contact technical
support.

Abnormal Failed to start the image creation
task.

Contact technical
support.

Abnormal The Roman image has been created
but cannot be shared with resource
tenants.

Contact technical
support.

Normal Image created. -

Normal The image creation task started. -

Normal The environment image creation task
started.

-

Normal The request for creating an
environment image received.

-

Normal The request for creating an image
received.

-

Normal An existing environment image is
used.

-

Abnormal Failed to create the image. For
details, see image creation logs.

View the build logs
to locate and rectify
the fault. FAQs

Abnormal Failed to create the image due to an
internal system error. Contact
technical support.

Contact technical
support.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 19

https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0204.html
https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0206.html
https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0204.html

Abnormal Failed to import model file xxx
because it is larger than 5 GB.

The size of the
model file xxx is
greater than 5 GB.
Downsize the model
file and try again, or
use dynamic loading
to import the model
file. FAQs

Abnormal Failed to create the OBS bucket due
to an internal system error. Contact
technical support.

Contact technical
support.

Abnormal Failed to calculate the model size.
Subpath xxx does not exist in path
xxx.

Correct the subpath
and try again, or
contact technical
support.

Abnormal Failed to calculate the model size.
The model of the xxx type does not
exist in path xxx.

Check the storage
location of the
model of the xxx
type, correct the
path, and try again,
or contact technical
support.

Warning Failed to calculate the model size.
More than one xxx model file is
stored in path xxx.

-

During AI application creation, key events can both be manually and automatically
refreshed.

Viewing Events
1. In the navigation pane of the ModelArts management console, choose AI

Application Management > AI Applications. In the AI application list, click
the name of the target AI application to go to its details page.

2. View the events on the Events tab page.

ModelArts
Inference Deployment 2 Managing AI Applications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 20

https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0258.html

3 Deploying an AI Application as a Service

3.1 Deploying AI Applications as Real-Time Services

3.1.1 Deploying as a Real-Time Service
After an AI application is prepared, you can deploy it as a real-time service and
call the service for prediction.

Constraints
A maximum of 20 real-time services can be deployed by a user.

Prerequisites
● Data has been prepared. Specifically, you have created an AI application in the

Normal state in ModelArts.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose Service Deployment > Real-Time Services. The real-time service list
is displayed by default.

2. In the real-time service list, click Deploy in the upper left corner. The Deploy
page is displayed.

3. Set parameters for a real-time service.

a. Set basic information about model deployment. For details about the
parameters, see Table 3-1.

Table 3-1 Basic parameters

Parameter Description

Name Enter a name for the real-time service.

Description Enter a brief description for the real-time service.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 21

b. Enter key information including the resource pool and AI application

configurations. For details, see Table 3-2.

Table 3-2 Parameters

Param
eter

Sub-
Parame
ter

Description

Resour
ce Pool

Public
Resourc
e Pool

CPU/GPU computing resources are available for
you to select.

Dedicat
ed
Resourc
e Pool

Select a specification from the dedicated resource
pool specifications. The physical pools with logical
subpools created are not supported temporarily.
NOTE

● The data of old-version dedicated resource pools will
be gradually migrated to the new-version dedicated
resource pools.

● For new users and the existing users who have
migrated data from old-version dedicated resource
pools to new ones, there is only one entry to new-
version dedicated resource pools on the ModelArts
management console.

● For the existing users who have not migrated data
from old-version dedicated resource pools to new
ones, there are two entries to dedicated resource
pools on the ModelArts management console, where
the entry marked with New is to the new version.

For more details about the new-version dedicated
resource pools, see Comprehensive Upgrades to
ModelArts Resource Pool Management Functions

AI
Applic
ation
and
Config
uration

AI
Applicat
ion
Source

Select My AI Applications based on your
requirements.

AI
Applicat
ion and
Version

Select the AI application and version that are in the
Normal state.

Streams Number of video streams that can be concurrently
processed. This parameter is available only for
asynchronous request models.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 22

https://support.huaweicloud.com/eu/resmgmt-modelarts/resmgmt-modelarts_0002.html
https://support.huaweicloud.com/eu/resmgmt-modelarts/resmgmt-modelarts_0002.html

Param
eter

Sub-
Parame
ter

Description

Specific
ations

Select available specifications based on the list
displayed on the console. The specifications in gray
cannot be used in the current environment.
If specifications in the public resource pools are
unavailable, no public resource pool is available in
the current environment. In this case, use a
dedicated resource pool or contact the
administrator to create a public resource pool.
NOTE

When the selected flavor is used to deploy the service,
necessary system consumption is generated. Therefore,
the resources actually occupied by the service are slightly
greater than the selected flavor.

Comput
e Nodes

Set the number of instances for the current AI
application version. If you set the number of nodes
to 1, the standalone computing mode is used. If
you set the number of nodes to a value greater
than 1, the distributed computing mode is used.
Select a computing mode based on the actual
requirements.

Timeout Timeout of a single model, including both the
deployment and startup time. The default value is
20 minutes. The value must range from 3 to 120.

Add AI
Applicat
ion
Version
and
Configu
ration

If the selected AI application has multiple versions,
you can add multiple versions and configure a
traffic ratio. You can use gray launch to smoothly
upgrade the AI application version.
NOTE

Free compute specifications do not support the gray
launch of multiple versions.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 23

Param
eter

Sub-
Parame
ter

Description

Mount
Storage

This function will mount a storage volume to
compute nodes (compute instances) as a local
directory when the service is running. It is
recommended when the model or input data is
large. There are two volume types: OBS parallel file
system and SFS file system. Currently, only OBS
parallel file systems are supported.
● OBS parallel file system

– Source Path: Select the storage path of the
parallel file. A cross-region OBS parallel file
system cannot be selected.

– Mount Path: Enter the mount path of the
container, for example, /tmp.
– To avoid container exceptions, do not

mount the storage to a system directory
like / or /var/run.

– It is a good practice to mount the
container to an empty directory. If the
directory is not empty, ensure that there
are no files affecting container startup in
the directory. Otherwise, such files will be
replaced, resulting in failures to start the
container and create the workload.

– The mount path must start with a slash
(/) and can contain a maximum of 1,024
characters, including letters, digits, and
the following special characters: \ _ -.

● SFS file system (not supported)
NOTE

Storage mounting can be used only by services deployed
in a dedicated resource pool.

c. (Optional) Configure advanced settings.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 24

Table 3-3 Advanced settings

Parameter Description

Tags ModelArts can work with Tag Management Service
(TMS). When creating resource-consuming tasks in
ModelArts, for example, training jobs, configure
tags for these tasks so that ModelArts can use tags
to manage resources by group.
For details about how to use tags, see "How Does
ModelArts Use Tags to Manage Resources by
Group?" in ModelArts FAQs.
NOTE

You can select a predefined TMS tag from the tag drop-
down list or customize a tag. Predefined tags are
available to all service resources that support tags.
Customized tags are available only to the service
resources of the user who has created the tags.

4. After confirming the entered information, complete service deployment as

prompted. Generally, service deployment jobs run for a period of time, which
may be several minutes or tens of minutes depending on the amount of your
selected data and resources.

NO TE

After a real-time service is deployed, it is started immediately.

You can go to the real-time service list to check whether the deployment of
the real-time service is complete. In the real-time service list, after the status
of the newly deployed service changes from Deploying to Running, the
service is deployed successfully.

3.1.2 Viewing Service Details
After an AI application is deployed as a real-time service, you can access the
service page to view its details.

1. Log in to the ModelArts management console and choose Service
Deployment > Real-Time Services.

2. On the Real-Time Services page, click the name of the target service. The
service details page is displayed.
You can view the service name, status, and other information. For details, see
Table 3-4.

Table 3-4 real-time service parameters

Parameter Description

Name Name of the real-time service.

Status Status of the real-time service.

Source AI application source of the real-time service.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 25

Parameter Description

Service ID Real-time service ID

Description Service description, which can be edited after you click the
edit button on the right side.

Resource
Pool

Resource pool specifications used by the service.

Custom
Settings

Customized configurations based on real-time service
versions. This allows version-based traffic distribution
policies and configurations. Enable this option and click
View Settings to customize the settings. For details, see
Modifying Customized Settings.

Traffic Limit Maximum number of times a service can be accessed within
a second.

WebSocket Whether to upgrade to the WebSocket service.

3. Switch between tabs on the details page of a real-time service to view more

details. For details, see Table 3-5.

Table 3-5 Details of a real-time service

Parameter Description

Usage Guides This page displays the API URL, AI application
information, input parameters, and output parameters.
You can click to copy the API URL to call the service.

Prediction You can perform real-time prediction on this page. For
details, see Testing the Deployed Service.

Configuration
Updates

This page displays Current Configurations and Update
History.
● Current Configurations: AI application name,

version, status, deployed resource pool, compute
node specifications, traffic ratio, number of compute
nodes, and deployment timeout interval. You can
deploy a dedicated resource pool on this page, and
the resource pool information is displayed.

● Update History: historical AI application
information.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 26

Parameter Description

Monitoring This page displays resource usage and AI application
calls.
● Resource Usage: includes the used and available

CPU, memory, and GPU resources.
● AI Application Calls: indicates the number of AI

application calls. The statistics collection starts after
the AI application status changes to Ready. (This
parameter is not displayed for WebSocket services.)

Event This page displays key operations during service use,
such as the service deployment progress, detailed
causes of deployment exceptions, and time points when
a service is started, stopped, or modified.
Events are saved for one month and will be
automatically cleared then.
For details about how to view events of a service, see
Viewing Service Events.

Logs This page displays the log information about each AI
application in the service. You can view logs generated
in the latest 5 minutes, latest 30 minutes, latest 1 hour,
and user-defined time segment.
You can select the start time and end time when
defining the time segment.
Meet the following rules to search logs:
● Do not enter strings that contain any following

delimiters: ,'";=()[]{}@&<>/:\n\t\r.
● Enter keywords for exact search. A keyword is a word

between two adjacent delimiters.
● Enter keywords for fuzzy search. For example, you

can enter error, er?or, rro*, or er*r.
● Enter phrases for exact search. For example, Start to

refresh.
● Before enabling this function, you can combine

keywords with AND (&&) or OR (||). For example,
query logs&&erro* or query logs||erro*. After
enabling this function, you can combine keywords
with AND or OR. For example, query logs AND
erro* or query logs OR erro*.

Modifying Customized Settings
A customized configuration rule consists of the configuration condition (Setting),
access version (Version), and customized running parameters (including Setting
Name and Setting Value).

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 27

You can configure different settings with customized running parameters for
different versions of a real-time service.

The priorities of customized configuration rules are in descending order. You can
change the priorities by dragging the sequence of customized configuration rules.

After a rule is matched, the system will no longer match subsequent rules. A
maximum of 10 configuration rules can be configured.

Table 3-6 Parameters for Custom Settings

Parameter Man
dator
y

Description

Setting Yes Expression of the Spring Expression Language (SPEL) rule.
Only the equal, matches, and hashCode expressions of
the character type are supported.

Version Yes Access version for a customized service configuration rule.
When a rule is matched, the real-time service of the
version is requested.

Setting
Name

No Key of a customized running parameter, consisting of a
maximum of 128 characters.
Configure this parameter if the HTTP message header is
used to carry customized running parameters to a real-
time service.

Setting
Value

No Value of a customized running parameter, consisting of a
maximum of 256 characters.
Configure this parameter if the HTTP message header is
used to carry customized running parameters to a real-
time service.

Customized settings can be used in the following scenarios:

● If multiple versions of a real-time service are deployed for gray release,
customized settings can be used to distribute traffic by user.

Table 3-7 Built-in variables

Built-in Variable Description

DOMAIN_NAME Account name that is used to call an inference request

DOMAIN_ID Account ID that is used to call an inference request

PROJECT_NAME Project name that is used to call an inference request

PROJECT_ID Project ID that invokes the inference request

USER_NAME Username that is used to call an inference request

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 28

Built-in Variable Description

USER_ID User ID that is used to call an inference request

Pound key (#) indicates that a variable is referenced. The matched character
string must be enclosed in single quotation marks.
#{Built-in variable} == 'Character string'
#{Built-in variable} matches 'Regular expression'

– Example 1:
If the account name for invoking the inference request is User A, the
specified version is matched.
#DOMAIN_NAME == 'User A'

– Example 2:
If the account name in the inference request starts with op, the specified
version is matched.
#DOMAIN_NAME matches 'op.*'

Table 3-8 Common regular expressions

Characte
r

Description

. Match any single character except \n. To match any
character including \n, use (.|\n).

* Match the subexpression that it follows for zero or multiple
times. For example, zo* can match z and zoo.

+ Match the subexpression that it follows for once or multiple
times. For example, zo+ can match zo and zoo, but cannot
match z.

? Match the subexpression that it follows for zero or one
time. For example, do(es)? can match does or do in does.

^ Match the start of the input string.

$ Match the end of the input string.

{n} n is a non-negative integer, which matches exactly n
number of occurrences of an expression. For example, o{2}
cannot match o in Bob, but can match two os in food.

x|y Match x or y. For example, z|food can match z or food, and
(z|f)ood can match zood or food.

[xyz] Character set, where any single character in it can be
matched. For example, [abc] can match a in plain.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 29

Figure 3-1 Traffic distribution by user

● If multiple versions of a real-time service are deployed for gated launch,
customized settings can be used to access different versions through the
header.
Start with #HEADER_ to indicate that the header is referenced as a condition.
#HEADER_{key} == '{value}'
#HEADER_{key} matches '{value}'

– Example 1:
If the header of an inference HTTP request contains a version and the
value is 0.0.1, the condition is met. Otherwise, the condition is not met.
#HEADER_version == '0.0.1'

– Example 2:
If the header of an inference HTTP request contains testheader and the
value starts with mock, the rule is matched.
#HEADER_testheader matches 'mock.*'

– Example 3:
If the header of an inference HTTP request contains uid and the hash
code value meets the conditions described in the following algorithm, the
rule is matched.
#HEADER_uid.hashCode() % 100 < 10

Figure 3-2 Using the header to access different versions

● If a real-time service version supports different runtime configurations, you
can use Setting Name and Setting Value to specify customized runtime
parameters so that different users can use different running configurations.
Example:
When user A accesses the AI application, the user uses configuration A. When
user B accesses the AI application, the user uses configuration B. When
matching a running configuration, ModelArts adds a header to the request
and also the customized running parameters specified by Setting Name and
Setting Value.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 30

Figure 3-3 Customized running parameters added for a customized
configuration rule

3.1.3 Testing the Deployed Service
After an AI application is deployed as a real-time service, you can debug code or
add files for testing on the Prediction tab page. Based on the input request (JSON
text or file) defined by the AI application, the service can be tested in either of the
following ways:

● JSON Text Prediction: If the input type of the AI application of the deployed
service is JSON text, that is, the input does not contain files, you can enter the
JSON code on the Prediction tab page for service testing.

● File Prediction: If the input type of the AI application of the deployed service
is file, including images, audios, and videos, you can add images on the
Prediction tab page for service testing.

NO TE

● If the input type is image, the size of a single image must be less than 8 MB.
● The maximum size of the request body for JSON text prediction is 8 MB.
● Due to the limitation of API Gateway, the duration of a single prediction cannot exceed

40s.
● The following image types are supported: png, psd, jpg, jpeg, bmp, gif, webp, psd, svg,

and tiff.
● If Ascend flavors are used during service deployment, transparent .png images cannot

be predicted because Ascend supports only RGB-3 images.
● This function is used for commissioning. In actual production, you are advised to call

APIs. You can select Access Authenticated Using a Token based on the authentication
mode.

Input Parameters
After a service is deployed, obtain the input parameters of the service on the
Usage Guides tab page of the service details page.

The input parameters displayed on the Usage Guides tab page vary depending on
the AI application source that you select.

● If your metamodel comes from ExeML or a built-in algorithm, the input and
output parameters are defined by ModelArts. For details, see the Usage
Guides tab page. On the Prediction tab page, enter the corresponding JSON
text or file for service testing.

● If you use a custom meta model with the inference code and configuration
file compiled by yourself (Specifications for Writing the Model
Configuration File), ModelArts only visualizes your data on the Usage

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 31

Guides tab page. The following figure shows the mapping between the input
parameters displayed on the Usage Guides tab page and the configuration
file.

Figure 3-4 Mapping between the configuration file and Usage Guides

JSON Text Prediction
1. Log in to the ModelArts management console and choose Service

Deployment > Real-Time Services.
2. On the Real-Time Services page, click the name of the target service. The

service details page is displayed. Enter the inference code on the Prediction
tab, and click Predict to perform prediction.

File Prediction
1. Log in to the ModelArts management console and choose Service

Deployment > Real-Time Services.
2. On the Real-Time Services page, click the name of the target service. The

service details page is displayed. On the Prediction tab page, click Upload
and select a test file. After the file is uploaded successfully, click Predict to
perform a prediction test.

3.1.4 Accessing Real-Time Services

3.1.4.1 Accessing a Real-Time Service

If a real-time service is in the Running status, the real-time service has been
deployed successfully. This service provides a standard RESTful API for you to call.
Before integrating the API to the production environment, commission the API.

ModelArts supports the following authentication methods for accessing real-time
services (HTTPS requests are used as an example):

● Access Authenticated Using a Token

ModelArts allows you to call APIs to access real-time services in the following
ways:

● Accessing a Real-Time Service (Public Network Channel)
● Accessing a Real-Time Service (VPC Channel)

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 32

● Accessing a Real-Time Service (VPC High-Speed Channel)

When you call an API to access a real-time service, the size of the prediction
request body and the prediction time are subject to the following limitations:
● The size of a request body cannot exceed 12 MB. Otherwise, the request will

fail.
● Due to the limitation of API Gateway, the prediction duration of each request

does not exceed 40 seconds.

3.1.4.2 Authentication Mode

3.1.4.2.1 Access Authenticated Using a Token

If a real-time service is in the Running state, it has been deployed successfully.
This service provides a standard RESTful API for users to call. Before integrating
the API to the production environment, commission the API. You can use the
following methods to send an inference request to the real-time service:

● Method 1: Use GUI-based Software for Inference (Postman). (Postman is
recommended for Windows.)

● Method 2: Run the cURL Command to Send an Inference Request. (curl
commands are recommended for Linux.)

● Method 3: Use Python to Send an Inference Request.

Prerequisites
You have obtained a user token, local path to the inference file, URL of the real-
time service, and input parameters of the real-time service.

● The local path to the inference file can be an absolute path (for example, D:/
test.png for Windows and /opt/data/test.png for Linux) or a relative path
(for example, ./test.png).

● You can obtain the service URL and input parameters of a real-time service on
the Usage Guides tab page of its service details page.
The API URL is the service URL of the real-time service. If a path is defined for
apis in the model configuration file, the URL must be followed by the user-
defined path, for example, {URL of the real-time service}/predictions/poetry.

Method 1: Use GUI-based Software for Inference (Postman)
1. Download Postman and install it, or install the Postman Chrome extension.

Alternatively, use other software that can send POST requests. Postman 7.24.0
is recommended.

2. Open Postman.
3. Set parameters on Postman. The following uses image classification as an

example.
– Select a POST task and copy the API URL to the POST text box. On the

Headers tab page, set Key to X-Auth-Token and Value to the user
token.

– On the Body tab page, file input and text input are available.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 33

▪ File input
Select form-data. Set KEY to the input parameter of the AI
application, which must be the same as the input parameter of the
real-time service. In this example, the KEY is images. Set VALUE to
an image to be inferred (only one image can be inferred).

▪ Text input
Select raw and then JSON(application/json). Enter the request body
in the text box below. An example request body is as follows:
{
 "meta": {
 "uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
 },
 "data": {
 "req_data": [
 {
 "sepal_length": 3,
 "sepal_width": 1,
 "petal_length": 2.2,
 "petal_width": 4
 }
]
 }
}

meta can carry a universally unique identifier (UUID). When the
inference result is returned after API calling, the UUID is returned to
trace the request. If you do not need this function, leave meta blank.
data contains a req_data array for one or multiple pieces of input
data. The parameters of each piece of data, such as sepal_length
and sepal_width in this example are determined by the AI
application.

4. After setting the parameters, click send to send the request. The result will be
displayed in Response.
– Inference result using file input: The field values in the return result vary

with the AI application.
– Inference result using text input: The request body contains meta and

data. If the request contains uuid, uuid will be returned in the response.
Otherwise, uuid is left blank. data contains a resp_data array for the
inference results of one or multiple pieces of input data. The parameters
of each result are determined by the AI application, for example,
sepal_length and predictresult in this example.

Method 2: Run the cURL Command to Send an Inference Request
The command for sending inference requests can be input as a file or text.

● File input
curl -kv -F 'images=@Image path' -H 'X-Auth-Token:Token value' -X POST Real-time service URL

– -k indicates that SSL websites can be accessed without using a security
certificate.

– -F indicates file input. In this example, the parameter name is images,
which can be changed as required. The image storage path follows @.

– -H indicates the header of a POST command. X-Auth-Token is the
header key, which is fixed. Token value indicates the user token.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 34

– POST is followed by the API URL of the real-time service.
The following is an example of the cURL command for inference with file
input:
curl -kv -F 'images=@/home/data/test.png' -H 'X-Auth-Token:MIISkAY***80T9wHQ==' -X POST https://
modelarts-infers-1.xxx/v1/infers/eb3e0c54-3dfa-4750-af0c-95c45e5d3e83

● Text input
curl -kv -d '{"data":{"req_data":
[{"sepal_length":3,"sepal_width":1,"petal_length":2.2,"petal_width":4}]}}' -H 'X-Auth-
Token:MIISkAY***80T9wHQ==' -H 'Content-type: application/json' -X POST https://modelarts-
infers-1.xxx/v1/infers/eb3e0c54-3dfa-4750-af0c-95c45e5d3e83

-d indicates the text input of the request body.

Method 3: Use Python to Send an Inference Request
1. Download the Python SDK and configure it in the development tool. For

details, see Integrating the Python SDK for API request signing.
2. Create a request body for inference.

– File input
coding=utf-8

import requests

if __name__ == '__main__':
 # Config url, token and file path.
 url = "URL of the real-time service"
 token = "User token"
 file_path = "Local path to the inference file"

 # Send request.
 headers = {
 'X-Auth-Token': token
 }
 files = {
 'images': open(file_path, 'rb')
 }
 resp = requests.post(url, headers=headers, files=files)

 # Print result.
 print(resp.status_code)
 print(resp.text)

The files name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the file type.

– Text input (JSON)
The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
coding=utf-8

import base64
import requests

if __name__ == '__main__':
 # Config url, token and file path
 url = "URL of the real-time service"
 token = "User token"
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

 # Set body,then send request

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 35

https://support.huaweicloud.com/eu/devg-apisign/api-sign-sdk-python.html

 headers = {
 'Content-Type': 'application/json',
 'X-Auth-Token': token
 }
 body = {
 'image': base64_data
 }
 resp = requests.post(url, headers=headers, json=body)

 # Print result
 print(resp.status_code)
 print(resp.text)

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the string type. The value of base64_data in body is of the
string type.

3.1.4.3 Access Mode

3.1.4.3.1 Accessing a Real-Time Service (Public Network Channel)

Context
By default, ModelArts inference uses the public network to access real-time
services. After a real-time service is deployed, a standard RESTful API is provided
for you to call. You can view the API URL on the Usage Guides tab page of the
service details page.

Figure 3-5 API URL

Accessing a Real-Time Service
The following authentication modes are available for accessing real-time services
from a public network:

● Access Authenticated Using a Token

3.1.4.3.2 Accessing a Real-Time Service (VPC Channel)

Context
To access a ModelArts real-time service from an internal VPC node of your
account, you can use a VPC channel. By creating an endpoint in your VPC and
connecting to the ModelArts VPC endpoint service, you can access the real-time
service from your VPC endpoint.

Procedure
To access a real-time service through a VPC channel, perform the following steps:

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 36

1. Obtain the ModelArts VPC endpoint service address.
2. Buy and connect to a ModelArts endpoint.
3. Set a VPC access channel for real-time services.
4. Create a private DNS zone.
5. Access a real-time service through VPC.

Step 1 Obtain the ModelArts VPC endpoint service address.

1. Log in to the ModelArts management console and choose Service
Deployment > Real-Time Services.

2. Click Access VPC. In the displayed dialog box, view the VPC endpoint service
address.

Figure 3-6 Viewing a VPC endpoint service address

Step 2 Buy and connect to a ModelArts endpoint.

1. Log in to the VPC management console. In the navigation pane, choose VPC
Endpoint > VPC Endpoints.

2. Click Buy VPC Endpoint in the upper right corner.
– Region: region where the VPC endpoint is located.

Resources in different regions cannot communicate with each other. The
region must be the same as that of ModelArts.

– Service Category: Select Find a service by name.
– VPC Endpoint Service Name: Enter the endpoint service address

obtained in Step 1. Click Verify on the right. The system automatically
sets VPC, Subnet, and Private IP Address.

– Create a Private Domain Name: Retain the default setting.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 37

Figure 3-7 Buying a VPC endpoint

3. Confirm the specifications, and click Next and then Submit. The VPC
endpoint list page is displayed.

Step 3 Set a VPC access channel for real-time services.

1. Log in to the ModelArts management console. In the navigation pane, choose
Service Deployment > Real-Time Services.

2. Click Access VPC. In the displayed dialog box, select the VPC used in Step 2.
The endpoint ID and endpoint IP address are automatically displayed.

Figure 3-8 Selecting VPC

Step 4 Create a private DNS zone.

1. Log in to the DNS console. In the navigation pane on the left, choose Private
Zones.

2. Click Create Private Zone. Set the following parameters:
– Domain Name: infer-modelarts-<regionId>.myhuaweicloud.com. The

current region ID without hyphens (-) is the value of regionId.
– VPC: VPC selected in Figure 3-9

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 38

Figure 3-9 Creating a private zone

3. Click OK.

Step 5 Access a real-time service through VPC.

1. Use the following API to access a real-time service through VPC:
https://{Private DNS domain name}/{URL}

– Private DNS domain name: private domain name set in Figure 3-9. You
can also click Access VPC on the real-time service list page to view the
domain name in the displayed dialog box.

– URL: The URL for a real-time service is the part after the domain name of
API URL in the Usage Guides tab of the service details page.

Figure 3-10 Obtaining the URL

2. Use GUI-based software, cURL command, or Python to access a real-time
service. For details, see Access Authenticated Using a Token.

----End

3.1.4.3.3 Accessing a Real-Time Service (VPC High-Speed Channel)

Context

When accessing a real-time service, you may require:

● High throughput and low latency
● TCP or RPC requests

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 39

To meet these requirements, ModelArts enables high-speed access through VPC
peering.

In high-speed access through VPC peering, your service requests are directly sent
to instances through VPC peering but not through the inference platform. This
accelerates service access.

NO TE

The following functions that are available through the inference platform will be
unavailable if you use high-speed access:
● Authentication
● Traffic distribution by configuration
● Load balancing
● Alarm, monitoring, and statistics

Figure 3-11 High-speed access through VPC peering

Preparations
Deploy a real-time service in a dedicated resource pool and ensure the service is
running.

NO TICE

● For details about how to deploy services in new-version dedicated resource
pools, see Comprehensive Upgrades to ModelArts Resource Pool
Management Functions.

● Only the services deployed in a dedicated resource pool support high-speed
access through VPC peering.

● High-speed access through VPC peering is available only for real-time services.
● Due to traffic control, the number of calls of each tenant account cannot

exceed 2000 per minute, and that of each IAM user account cannot exceed 20
per minute.

● High-speed access through VPC peering is available only for the services
deployed using the AI applications imported from custom images.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 40

https://support.huaweicloud.com/eu/resmgmt-modelarts/resmgmt-modelarts_0002.html
https://support.huaweicloud.com/eu/resmgmt-modelarts/resmgmt-modelarts_0002.html

Procedure
To enable high-speed access to a real-time service through VPC peering, perform
the following operations:

1. Interconnect the dedicated resource pool to the VPC.
2. Create an ECS in the VPC.
3. Obtain the IP address and port number of the service.
4. Access the service through the IP address and port number.

Step 1 Interconnect the dedicated resource pool to the VPC.

Log in to the ModelArts management console, choose Dedicated Resource Pools
> Elastic Cluster, locate the dedicated resource pool used for service deployment,
and click its name/ID to go to the resource pool details page. Obtain the network
configuration. Switch back to the dedicated resource pool list, click the Network
tab, locate the network associated with the dedicated resource pool, and
interconnect it with the VPC. After the VPC is accessed, the VPC will be displayed
on the network list and resource pool details pages. Click the VPC to go to the
details page.

Figure 3-12 Locating the target dedicated resource pool

Figure 3-13 Obtaining the network configuration

Figure 3-14 Interconnecting the VPC

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 41

Step 2 Create an ECS in the VPC.

Log in to the ECS management console and click Buy ECS in the upper right
corner. On the Buy ECS page, configure basic settings and click Next: Configure
Network. On the Configure Network page, select the VPC connected in Step 1,
configure other parameters, confirm the settings, and click Submit. When the ECS
status changes to Running, the ECS has been created. Click its name/ID to go to
the server details page and view the VPC configuration.

Figure 3-15 Purchasing an ECS

Step 3 Obtain the IP address and port number of the service.

GUI software, for example, Postman can be used to obtain the IP address and port
number. Alternatively, log in to the ECS, create a Python environment, and execute
code to obtain the service IP address and port number.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 42

API:

GET /v1/{project_id}/services/{service_id}/predict/endpoints?type=host_endpoints

For details about how to obtain a service endpoint, see "Before You Start" >
"Endpoints" in ModelArts API Reference.

● Obtain the IP address and port number using GUI software.

Figure 3-16 Example response

● Obtain the IP address and port number using Python.

The Python code is as follows (mandatory parameters must be configured):
def get_app_info(project_id, service_id):
list_host_endpoints_url = "{}/v1/{}/services/{}/predict/endpoints?type=host_endpoints"
url = list_host_endpoints_url.format(REGION_ENDPOINT, project_id, service_id)
headers = {'X-Auth-Token': X_Auth_Token}
response = requests.get(url, headers=headers)
print(response.content)

Step 4 Access the service through the IP address and port number.

Log in to the ECS and access the real-time service either by running Linux
commands or by creating a Python environment and executing Python code.
Obtain the values of schema, ip, and port from Step 3.

● Run the following command to access the real-time service:
curl --location --request POST 'http://192.168.205.58:31997' \
--header 'Content-Type: application/json' \
--data-raw '{"a":"a"}'

Figure 3-17 Accessing a real-time service

● Create a Python environment and execute Python code to access the real-
time service.
def vpc_infer(schema, ip, port, body):
infer_url = "{}://{}:{}"
url = infer_url.format(schema, ip, port)
response = requests.post(url, data=body)
print(response.content)

----End

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 43

3.1.5 Maintaining Real-Time Services

3.1.5.1 Scaling

3.1.5.1.1 Overview

ModelArts provides manual scaling and auto scaling to meet different user
requirements. Only the number of instances of a single AI application can be
changed.

● Manual scaling allows you to manually change the number of instances of a
single AI application.

● Auto scaling allows you to configure scaling policies to add instances when
the traffic is high, and reduce them when the traffic is low. This helps you use
your resources more efficiently.

Table 3-9 Comparison between manual scaling and auto scaling

Scaling Type Manual Scaling Auto Scaling

Method Manual Auto

Operation Change the number of
compute nodes.

Configure scaling policies.

Execution Executed after manual
configuration

Periodically triggered or
triggered by metrics

Result after
scaling failed

The number of instances
reverts to the previous
value.

The number of instances
changes to a specific value.

3.1.5.1.2 Manual Scaling

Manual scaling allows you to manually change the number of instances of a
single AI application.

Prerequisites
The service status is Running, Abnormal, or Alarm.

Procedure
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Service Deployment > Real-Time Services. The Real-Time
Services page is displayed.

2. Click the check box next to the service name to display the hidden view at the

bottom of the list. (If the view is not displayed, click in the bottom right
corner.)

3. Click Resize Compute Resources in the Operation column of the target AI
application version.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 44

Figure 3-18 Resize Compute Resources

4. Set the following parameters. Other parameters cannot be modified.
– Auto Stop: This parameter is displayed if auto stop is enabled for the

service. The service will automatically stop upon the specified time. You
can click Modify to change the auto stop time.

– Resize Type: Select Manual.
– Compute Nodes: Set the number of required compute nodes. The

minimum value is 1.
5. Click Next and then Submit. Return to the real-time service list.

3.1.5.1.3 Auto Scaling

Auto scaling allows you to configure scaling policies to add instances when the
traffic is high, and reduce them when the traffic is low. This helps you use your
resources more efficiently.

Prerequisites

The service status is Running, Abnormal, or Alarm.

Constraints
● Real-time services deployed in a public resource pool do not support auto

scaling.
● Scaling is not allowed when a service is stopped, abnormal, being deployed,

or being scaled.
● At least one policy rule must be configured.

Procedure
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Service Deployment > Real-Time Services. The Real-Time
Services page is displayed.

2. Click the check box next to the service name to display the hidden view at the

bottom of the list. (If the view is not displayed, click in the bottom right
corner.)

3. Click Resize Compute Resources in the Operation column of the target AI
application version.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 45

Figure 3-19 Resize Compute Resources

4. Configure parameters. The service name, current AI application version,
resource pool, AI application and version, and compute node specifications
cannot be modified.
Auto Stop: This parameter is displayed if auto stop is enabled for the service.
The service will automatically stop upon the specified time. You can click
Modify to change the auto stop time.
If Resize Type is set to Auto, you can set or reset scaling rules.
– Configuring a scaling policy

The following table lists the parameters.

Table 3-10 Policy parameters

Parameter Description

Policy Name Name of a scaling policy. The value can contain
1 to 64 visible characters, including only
lowercase letters, digits, hyphens (-), and periods
(.), and must start or end with a letter or digit.

Trigger Type Scheduled: Set a scheduled scaling policy to
trigger scaling at a specified time.
● Scheduling Rule: You can view, add, and

delete scheduling rules, and set whether to
enable scheduling rules.

▪ Viewing a rule
In the scheduling rule list, you can view the rule name, status, rule
type, triggering condition, number of target instances, whether to
enable the rule, and operations.
The rule statuses include Creating, Configured, Configuration
failed, Triggered, Trigger failed. If a rule has been configured but
not triggered, its status is Configured. After a rule is triggered and
the resource pool is resized, the rule status is Triggered. If a rule is
created when the service is stopped, the status is Creating. After the
service is started, the rule is automatically configured.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 46

NO TE

If a scheduling rule is always in the Creating state, the resource pool
version may be too old. In this case, contact Huawei technical support.

▪ Adding a rule

Click Add. In the Add Rule dialog box that appears, configure
parameters and click OK.

The following table describes the rule parameters.

Table 3-11 Rule parameters (scheduled triggering)

Parameter Description

Rule Name The value can contain only lowercase letters,
digits, hyphens (-), and periods (.), and must
start and end with a letter or digit. The rule
name must be unique. A maximum of 20
characters are supported.

Target Instances Set the number of target instances for scaling.

Triggered Choose when to run the rule. You can set it to
run daily, weekly, monthly, or at a custom time
using a cron expression. This time indicates the
local time of where the node is deployed. For
details about how to use a cron expression, see
Cron Expression.

NO TE

You can add a maximum of 10 rules.

▪ Deleting a rule

Click Delete in the Operation column of the scheduling rule you
want to remove.

▪ Enabling or disabling a rule

Click the button in the Enable column of the scheduling rule you
want to enable or disable. After a rule is disabled, it does not take
effect.

5. After you click Next and Submit, the service automatically resizes based on
the configured scaling policy.

Cron Expression

You can use a cron expression to trigger auto scaling. A cron expression is in the
format of "Minute Hour Date Month Week". For example, 30 10 15 * * indicates
that the rule is triggered at 10:30 on the 15th day of each month. You must set
the cron expression based on the local time zone.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 47

Figure 3-20 Cron expression syntax

● Time parameters

Table 3-12 Time parameters

Parameter Option Available Special
Character

Minute 0 to 59 * , - /

Hour 0 to 23 * , - /

Day 1 to 31 * , - /

Month 1 to 12 or JAN to DEC * , - /

Day in a week 0 to 6 or SUN to SAT * , - /

● Special characters

Table 3-13 Special characters

Special Character Description

Wildcard (*) Can be any value. For example, 0 0 1 * * indicates
00:00 on the first day of each month.

Comma (,) Separates items in a list. For example, 0 12,16 * *
* indicates 12:00 and 16:00 every day.

Hyphen (-) Indicates a value range. For example, 0 12,16 * *
* indicates 12:00 to 16:00 every day.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 48

Special Character Description

Slash (/) Indicates the range increment. For example, */10
* * * * indicates the 0th minute, 10th minute, 20th
minute, 30th minute, 40th minute, and 50th
minute of each hour. A slash can be used
together with a hyphen. For example, 3-59/15 * *
* indicates that a value is obtained every 15
minutes from the 3rd minute to the 59th minute
in an hour. The valid time points can be 0:03,
0:18, 0:43, and 0:58.

3.2 Deploying AI Applications as Batch Services

3.2.1 Deploying as a Batch Service
After an AI application is prepared, you can deploy it as a batch service. The
Service Deployment > Batch Services page lists all batch services.

Prerequisites
● A ModelArts application in the Normal state is available.
● Data to be batch processed is ready and has been upload to an OBS directory.
● At least one empty folder has been created in OBS for storing the output.

Context
● A maximum of 1,000 batch services can be created.
● Based on the input request (JSON or file) defined by the AI application,

different parameters are entered. If the AI application input is a JSON file, a
configuration file is required to generate a mapping file. If the AI application
input is a file, no mapping file is required.

● Batch services can only be deployed in a public resource pool, but not a
dedicated resource pool.

Procedure
1. Log in to the ModelArts management console. In the left navigation pane,

choose Service Deployment > Batch Services. By default, the Batch Services
page is displayed.

2. In the batch service list, click Deploy in the upper left corner. The Deploy
page is displayed.

3. Set parameters for a batch service.

a. Set the basic information, including Name and Description. The name is
generated by default, for example, service-bc0d. You can specify Name
and Description according to actual requirements.

b. Set other parameters, including AI application configurations. For details,
see Table 3-14.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 49

Table 3-14 Parameters

Parameter Description

AI Application
Source

Select My AI Applications based on your
requirements.

AI Application
and Version

Select an AI application and version that are
running properly.

Input Path Select the OBS directory where the uploaded data is
stored. Select a folder or a .manifest file. For details
about the specifications of the .manifest file, see
Manifest File Specifications.
NOTE

● If the input data is an image, ensure that the size of a
single image is less than 10 MB.

● If the input data is in CSV format, ensure that no
Chinese character is included.

● If the input data is in CSV format, ensure that the file
size does not exceed 12 MB.

Output Path Select the path for saving the batch prediction
result. You can select the empty folder that you
create.

Specifications Select available specifications based on the list
displayed on the console. The specifications in gray
cannot be used at the current region.

Compute Nodes Set the number of instances for the current AI
application version. If you set the number of nodes
to 1, the standalone computing mode is used. If you
set the number of nodes to a value greater than 1,
the distributed computing mode is used. Select a
computing mode based on the actual requirements.

Environment
Variable

Set environment variables and inject them to the
pod. To ensure data security, do not enter sensitive
information in environment variables.

Timeout Timeout of a single model, including both the
deployment and startup time. The default value is
20 minutes. The value must range from 3 to 120.

4. After setting the parameters, deploy the model as a batch service as

prompted. Deploying a service generally requires a period of time, which may
be several minutes or tens of minutes depending on the amount of your data
and resources.
You can go to the batch service list to view the basic information about the
batch service. In the batch service list, after the status of the newly deployed
service changes from Deploying to Running, the service is deployed
successfully.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 50

Manifest File Specifications
ModelArts batch services support manifest files, which describe data input and
output.

Example input manifest file
● File name: test.manifest
● File content:

{"source": "obs://test/data/1.jpg"}
{"source": "s3://test/data/2.jpg"}
{"source": "https://infers-data.obs.xxx.com:443/xgboosterdata/data.csv?
AccessKeyId=2Q0V0TQ461N26DDL18RB&Expires=1550611914&Signature=wZBttZj5QZrReDhz1uDzwve
8GpY%3D&x-obs-security-token=gQpzb3V0aGNoaW5hixvY8V9a1SnsxmGoHYmB1SArYMyqnQT-
ZaMSxHvl68kKLAy5feYvLDM..."}

● Requirements on the file:

a. The file name extension must be .manifest.
b. The file content is in JSON format. Each row describes a piece of input

data, which must be accurate to a file instead of a folder.
c. The value of source is the OBS file path in the format of <OBS path>/

{{Bucket name}}/{{Object name}}.

Example output manifest file

A manifest file will be generated in the output directory of the batch services.
● Assume that the output path is //test-bucket/test/. The result is stored in the

following path:
OBS bucket/directory name
├── test-bucket
│ ├── test
│ │ ├── infer-result-{{task_id}}.manifest
│ │ ├── infer-result
│ │ │ ├── 1.jpg_result.txt
│ │ │ ├── 2.jpg_result.txt

● Content of the infer-result-0.manifest file:
{"source": "obs://obs-data-bucket/test/data/1.jpg","result":"SUCCESSFUL","inference-loc": "obs://test-
bucket/test/infer-result/1.jpg_result.txt"}
{"source": "s3://obs-data-bucket/test/data/2.jpg","result":"FAILED","error_message": "Download file
failed."}
{"source ": "https://infers-data.obs.xxx.com:443/xgboosterdata/2.jpg?
AccessKeyId=2Q0V0TQ461N26DDL18RB&Expires=1550611914&Signature=wZBttZj5QZrReDhz1uDzwve
8GpY%3D&x-obs-security-token=gQpzb3V0aGNoaW5hixvY8V9a1SnsxmGoHYmB1SArYMyqnQT-
ZaMSxHvl68kKLAy5feYvLDMNZWxzhBZ6Q-3HcoZMh9gISwQOVBwm4ZytB_m8sg1fL6isU7T3CnoL9jmv
DGgT9VBC7dC1EyfSJrUcqfB_N0ykCsfrA1Tt_IQYZFDu_HyqVk-
GunUcTVdDfWlCV3TrYcpmznZjliAnYUO89kAwCYGeRZsCsC0ePu4PHMsBvYV9gWmN9AUZIDn1sfRL4vo
BpwQnp6tnAgHW49y5a6hP2hCAoQ-95SpUriJ434QlymoeKfTHVMKOeZxZea-
JxOvevOCGI5CcGehEJaz48sgH81UiHzl21zocNB_hpPfus2jY6KPglEJxMv6Kwmro-
ZBXWuSJUDOnSYXI-3ciYjg9-
h10b8W3sW1mOTFCWNGoWsd74it7l_5-7UUhoIeyPByO_REwkur2FOJsuMpGlRaPyglZxXm_jfdLFXobYtz
Zhbul4yWXga6oxTOkfcwykTOYH0NPoPRt5MYGYweOXXxFs3d5w2rd0y7p0QYhyTzIkk5CIz7FlWNapFISL
7zdhsl8RfchTqESq94KgkeqatSF_iIvnYMW2r8P8x2k_eb6NJ7U_q5ztMbO9oWEcfr0D2f7n7Bl_nb2HIB_H9tj
zKvqwngaimYhBbMRPfibvttW86GiwVP8vrC27FOn39Be9z2hSfJ_8pHej0yMlyNqZ481FQ5vWT_vFV3JHM-
7I1ZB0_hIdaHfItm-J69cTfHSEOzt7DGaMIES1o7U3w%3D%3D","result":"SUCCESSFUL","inference-loc":
"obs://test-bucket/test/infer-result/2.jpg_result.txt"}

● File format:

a. The file name is infer-result-{{task_id}}.manifest, where task_id is the
batch task ID, which is unique for a batch service.

b. If a large number of files need to be processed, multiple manifest files
may be generated with the same suffix .manifest and are distinguished
by suffix, for example, infer-result-{{task_id}}_1.manifest.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 51

c. The infer-result-{{task_id}} directory is created in the manifest directory
to store the file processing result.

d. The file content is in JSON format. Each row describes the output result
of a piece of input data.

e. The file contains multiple fields:

i. source: input data description, which is the same as that of the input
manifest file

ii. result: file processing result, which can be SUCCESSFUL or FAILED
iii. inference-loc: output result path. This field is available when result is

SUCCESSFUL. The format is obs://{{Bucket name}}/{Object name}.
iv. error_message: error information. This field is available when the

result is FAILED.

Example Mapping

The following example shows the relationship between the configuration file,
mapping rule, CSV data, and inference request.

The following uses a file for prediction as an example:

[
 {
 "method": "post",
 "url": "/",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "input_1": {
 "type": "number"
 },
 "input_2": {
 "type": "number"
 },
 "input_3": {
 "type": "number"
 },
 "input_4": {
 "type": "number"
 }
 }
 }
]
 }
 }
 }
 }
 }
 }
 }
]

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 52

The ModelArts management console automatically resolves the mapping
relationship from the configuration file as shown below. When calling a ModelArts
API, configure the mapping by following the rule.

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "input_1": {
 "type": "number",
 "index": 0
 },
 "input_2": {
 "type": "number",
 "index": 1
 },
 "input_3": {
 "type": "number",
 "index": 2
 },
 "input_4": {
 "type": "number",
 "index": 3
 }
 }
 }
]
 }
 }
 }
 }
}

Multiple pieces of CSV data for inference are separated by commas (,) The
following shows an example:

5.1,3.5,1.4,0.2
4.9,3.0,1.4,0.2
4.7,3.2,1.3,0.2

Depending on the defined mapping relationship, the inference request is shown
below, whose format is similar to that for real-time services.

{
 "data": {
 "req_data": [{
 "input_1": 5.1,
 "input_2": 3.5,
 "input_3": 1.4,
 "input_4": 0.2
 }]
 }
}

3.2.2 Viewing the Batch Service Prediction Result
When deploying a batch service, you can select the location of the output data
directory. You can view the running result of the batch service that is in the
Completed status.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 53

Procedure
1. Log in to the ModelArts management console and choose Service

Deployment > Batch Services.
2. Click the name of the target service in the Completed status. The service

details page is displayed.
– You can view the service name, status, ID, input path, output path, and

description.

– You can click in the Description area to edit the description.
3. Obtain the detailed OBS path next to Output Path, switch to the path and

obtain the batch service prediction results, including the prediction result file
and the AI application prediction result.
If the prediction is successful, the directory contains the prediction result file
and AI application prediction result. Otherwise, the directory contains only the
prediction result file.
– Prediction result file: The file is in xxx.manifest format, which contains

the file path and prediction result, and more.
– AI application prediction result:

▪ If images are input, a result file is generated for each image in the
Image name__result.txt format, for example,
IMG_20180919_115016.jpg_result.txt.

▪ If audio files are input, a result file is generated for each audio file in
the Audio file name__result.txt format, for example, 1-36929-
A-47.wav_result.txt.

▪ If table data is input, the result file is generated in the Table
name__result.txt format, for example, train.csv_result.txt.

3.3 Upgrading a Service
For a deployed service, you can modify its basic information to match service
changes and change the AI application version to upgrade it.

You can modify the basic information about a service in either of the following
ways:

Method 1: Modify Service Information on the Service Management Page

Method 2: Modify Service Information on the Service Details Page

Prerequisites

The service has been deployed. The service in the Deploying state cannot be
upgraded by modifying the service information.

Constraints
● Improper upgrade operations will interrupt service running during the

upgrade. Therefore, exercise caution when performing this operation.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 54

● ModelArts supports hitless rolling upgrade of real-time services in some
scenarios. Before upgrade, prepare for it and confirm the prerequisites.

Table 3-15 Scenarios for hitless rolling upgrade

Meta Model Source
for Creating an AI
Application

Using a Public Resource
Pool

Using a Dedicated
Resource Pool

Training job Not supported Not supported

Template Not supported Not supported

Container image Not supported Supported. The custom
image for creating an AI
application must meet
Custom Image
Specifications for
Creating AI
Applications.

OBS Not supported Not supported

Method 1: Modify Service Information on the Service Management Page
1. Log in to the ModelArts management console and choose Service

Deployment from the left navigation pane. Go to the service management
page of the target service.

2. In the service list, click Modify in the Operation column of the target service,
modify basic service information, and submit the modification task as
prompted.

When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed.

– For details about the real-time service parameters, see Deploying as a
Real-Time Service. To modify a real-time service, you also need to set
Max. Invalid Instances to set the maximum number of nodes that can
be concurrently upgraded, during which time these nodes are invalid.

– For details about the batch service parameters, see Deploying as a Batch
Service.

Method 2: Modify Service Information on the Service Details Page
1. Log in to the ModelArts management console and choose Service

Deployment from the left navigation pane. Go to the service management
page of the target service.

2. Click the name of the target service. The service details page is displayed.

3. Click Modify in the upper right corner of the page, modify the service details,
and submit the modification task as prompted.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 55

https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html

When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed.
– For details about the real-time service parameters, see Deploying as a

Real-Time Service. To modify a real-time service, you also need to set
Max. Invalid Instances to set the maximum number of nodes that can
be concurrently upgraded, during which time these nodes are invalid.

– For details about the batch service parameters, see Deploying as a Batch
Service.

3.4 Starting, Stopping, Deleting, or Restarting a Service

Starting a Service
You can start services in the Successful, Abnormal, or Stopped status. Services in
the Deploying state cannot be started. You can start a service in the following
ways:

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click Start in the Operation column to start the
target service.

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click the name of the target service. The service
details page is displayed. Click Start in the upper right corner of the page to
start the service.

Stopping a Service
Stop a service in either of the following ways:

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click Stop in the Operation column to stop a
service. (For a real-time service, choose More > Stop in the Operation
column.)

● Log in to the ModelArts management console and choose Service
Deployment from the left navigation pane. Go to the service management
page of the target service. Click the name of the target service. The service
details page is displayed. Click Stop in the upper right corner of the page to
stop the service.

Deleting a Service
If a service is no longer in use, delete it to release resources.

Log in to the ModelArts management console and choose Service Deployment
from the left navigation pane. Go to the service management page of the target
service.
● Real-time services

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 56

– In the real-time service list, choose More > Delete in the Operation
column of the target service to delete it.

– Select services in the real-time service list and click Delete above the list
to delete services in batches.

– Click the name of the target service. On the displayed service details
page, click Delete in the upper right corner to delete the service.

● Batch services
– In the batch service list, click Delete in the Operation column of the

target service to delete it.
– Select services in the batch service list and click Delete above the list to

delete services in batches.
– Click the name of the target service. On the displayed service details

page, click Delete in the upper right corner to delete the service.

NO TE

● A deleted service cannot be recovered.

● A service cannot be deleted without agency authorization.

Restarting a Service

You can restart a real-time service only when the service is in the Running or
Alarm state. Batch services and edge services cannot be restarted. You can restart
a real-time service in either of the following ways:

● Log in to the ModelArts management console and choose Service
Deployment from the navigation pane. Go to the real-time service list page.
Click More > Restart in the Operation column to restart the target service.

● Log in to the ModelArts management console and choose Service
Deployment from the navigation pane. Go to the real-time service list page.
Click the name of the target service. The service details page is displayed.
Click Restart in the upper right corner of the page to restart the service.

3.5 Viewing Service Events
During the whole lifecycle of a service, every key event is automatically recorded.
You can view the events on the details page of the service at any time.

This helps you better understand the process of deploying a service and locate
faults more accurately when a task exception occurs. The following table lists the
available events.

Type Event (xxx should be replaced with the
actual value.)

Solution

Normal The service starts to deploy. -

Abnormal Insufficient resources. Wait until idle
resources are sufficient.

Wait until the
resources are
released and try
again.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 57

Abnormal Insufficient xxx. The scheduling failed.
Supplementary information: xxx

Learn about
resource
insufficiency
details based on
the
supplementary
information. For
details, see
FAQs.

Normal The image starts to create. -

Abnormal Failed to create model image xxx. For
details, see logs :\nxxx.

Locate and
rectify the fault
based on the
build logs.

Abnormal Failed to create the image. Contact
technical
support.

Normal The image created. -

Abnormal Service xxx failed. Error: xxx Locate and
rectify the fault
based on the
error
information.

Abnormal Failed to update the service. Perform a
rollback.

Contact
technical
support.

Normal The service is being updated. -

Normal The service is being started. -

Normal The service is being stopped. -

Normal The service has been stopped. -

Normal Auto stop has been disabled. -

Normal Auto stop has been enabled. The service
will stop after xs.

-

Normal The service stops when the auto stop time
expires.

-

Abnormal The service is stopped because the quota
exceeds the upper limit.

Contact
technical
support.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 58

https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_05_3155.html

Abnormal Failed to automatically stop the service.
Error: xxx

Locate and
rectify the fault
based on the
error
information.

Normal Service instances deleted from resource
pool xxx.

-

Normal Service instances stopped in resource pool
xxx.

-

Abnormal The batch service failed. Try again later.
Error: xxx

Locate and
rectify the fault
based on the
error
information.

Normal The service has been executed. -

Abnormal Failed to stop the service. Error: xxx Locate and
rectify the fault
based on the
error
information.

Normal The subscription license xxx is to expire. -

Normal Service xxx started. -

Abnormal Failed to start service xxx. For details
about how to
locate and
rectify the fault,
see FAQs.

Abnormal Service deployment timed out. Error: xxx Locate and
rectify the fault
based on the
error
information.

Normal Failed to update the service. The update
has been rolled back.

-

Abnormal Failed to update the service. The rollback
failed.

Contact
technical
support.

During service deployment and running, key events can both be manually and
automatically refreshed.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 59

https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_13_0195.html

Viewing Events
1. In the left navigation pane of the ModelArts management console, choose

Service Deployment > Real-Time Services or Batch Services or Edge
Services. In the service list, click the name or ID of the target service to go to
its details page.

2. View the events on the Events tab page.

ModelArts
Inference Deployment 3 Deploying an AI Application as a Service

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 60

4 Inference Specifications

4.1 Model Package Specifications

4.1.1 Introduction to Model Package Specifications
When creating an AI application on the AI application management page, make
sure that any meta model imported from OBS complies with certain specifications.

NO TE

● The model package specifications are used when you import one model. If you import
multiple models, for example, there are multiple model files, use custom images.

● If you want to use an AI engine that is not supported by ModelArts, use a custom
image.

● For details about how to create a custom image, see Custom Image Specifications for
Creating AI Applications and Creating a Custom Image and Using It to Create an AI
Application.

● For more examples of custom scripts, see Examples of Custom Scripts.

The model package must contain the model directory. The model directory stores
the model file, model configuration file, and model inference code file.

● Model files: The requirements for model files vary according to the model
package structure. For details, see Model Package Example.

● Model configuration file: The model configuration file must be available and
its name is consistently to be config.json. There must be only one model
configuration file. For details about how to edit a model configuration file, see
Specifications for Editing a Model Configuration File .

● Model inference code file: It is mandatory. The file name is consistently to be
customize_service.py. There must be only one model inference code file. For
details about how to edit model inference code, see Specifications for
Writing Model Inference Code .
– The .py file on which customize_service.py depends can be directly

stored in the model directory. Use a relative import mode to import the
custom package.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 61

https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0270.html
https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0270.html

– The other files on which customize_service.py depends can be stored in
the model directory. You must use absolute paths to access these files.
For more details, see Obtaining an Absolute Pa....

ModelArts also provides custom script examples of common AI engines. For
details, see Examples of Custom Scripts.

Model Package Example
● Structure of the TensorFlow-based model package

When publishing the model, you only need to specify the ocr directory.
OBS bucket/directory name
|── ocr
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| │ ├── saved_model.pb (Mandatory) Protocol buffer file, which contains the diagram description
of the model
| │ ├── variables Name of a fixed sub-directory, which contains the weight and deviation rate of
the model. It is mandatory for the main file of the *.pb model.
| │ │ ├── variables.index Mandatory
| │ │ ├── variables.data-00000-of-00001 Mandatory
| │ ├──config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is supported.
| │ ├──customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists.
The files on which customize_service.py depends can be directly stored in the model directory.

● Structure of the Image-based model package
When publishing the model, you only need to specify the resnet directory.
OBS bucket/directory name
|── resnet
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├──config.json (Mandatory) Model configuration file (the address of the SWR image must be
configured). The file name is fixed to config.json. Only one model configuration file is supported.

● Structure of the PySpark-based model package
When publishing the model, you only need to specify the resnet directory.
OBS bucket/directory name
|── resnet
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| │ ├── spark_model (Mandatory) Model directory, which contains the model content saved by
PySpark
| │ ├──config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is supported.
| │ ├──customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists. The files on which
customize_service.py depends can be directly stored in the model directory.

● Structure of the PyTorch-based model package
When publishing the model, you only need to specify the resnet directory.
OBS bucket/directory name
|── resnet
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| │ ├── resnet50.pth (Mandatory) PyTorch model file, which contains variable and weight
information and is saved as state_dict
| │ ├──config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is supported.
| │ ├──customize_service.py (Mandatory) Model inference code. The file name is fixed to

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 62

customize_service.py. Only one model inference code file exists. The files on which
customize_service.py depends can be directly stored in the model directory.

● Structure of the XGBoost-based model package
When publishing the model, you only need to specify the resnet directory.
OBS bucket/directory name
|── resnet
| |── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| | |── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| | |── *.m (Mandatory): Model file whose extension name is .m
| | |── config.json (Mandatory) Model configuration file. The file name is fixed to config.json. Only
one model configuration file is supported.
| | |── customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists. The files on which
customize_service.py depends can be directly stored in the model directory.

● Structure of the Scikit_Learn-based model package
When publishing the model, you only need to specify the resnet directory.
OBS bucket/directory name
|── resnet
| |── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| | |── <<Custom Python package>> (Optional) User's Python package, which can be directly
referenced in model inference code
| | |── *.m (Mandatory): Model file whose extension name is .m
| | |── config.json (Mandatory) Model configuration file. The file name is fixed to config.json. Only
one model configuration file is supported.
| | |── customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file exists. The files on which
customize_service.py depends can be directly stored in the model directory.

4.1.2 Specifications for Editing a Model Configuration File
A model developer needs to edit a configuration file config.json when publishing
a model. The model configuration file describes the model usage, computing
framework, precision, inference code dependency package, and model API.

Configuration File Format
The configuration file is in JSON format. Table 4-1 describes the parameters.

Table 4-1 Parameters

Paramete
r

Mand
atory

Data
Type

Description

model_alg
orithm

Yes String Model algorithm, which is set by the model
developer to help model users understand the
usage of the model. The value must start with a
letter and contain no more than 36 characters.
Chinese characters and special characters
(&!'\"<>=) are not allowed. Common model
algorithms include image_classification (image
classification), object_detection (object
detection), and predict_analysis (prediction
analysis).

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 63

Paramete
r

Mand
atory

Data
Type

Description

model_typ
e

Yes String Model AI engine, which indicates the computing
framework used by a model. Common AI engines
and Image are supported.
● For details about supported AI engines, see

Supported AI Engines for ModelArts
Inference.

● If model_type is set to Image, the AI
application is created using a custom image.
In this case, parameter swr_location is
mandatory. For details about specifications for
custom images, see .Custom Image
Specifications for Creating AI Applications

runtime No String Model runtime environment. Python3.6 is used
by default The value of runtime depends on the
value of model_type. If model_type is set to
Image, you do not need to set runtime. If
model_type is set to another mainstream
framework, select the engine and runtime
environment. For details about the supported
running environments, see Supported AI Engines
for ModelArts Inference.
If your model must run on specified CPUs or
GPUs, select the CPUs or GPUs based on the
runtime suffix. If the runtime does not contain
the CPU or GPU information, check the runtime
description in Supported AI Engines for
ModelArts Inference.

metrics No Objec
t

Model precision information, including the
average value, recall rate, precision, and accuracy.
For details about the metrics object structure,
see Table 4-2.
The result is displayed in the model precision
area on the AI application details page.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 64

https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html
https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html

Paramete
r

Mand
atory

Data
Type

Description

apis No api
array

Format of the requests received and returned by
a model. The value is structure data.
It is the RESTful API array provided by a model.
For details about the API data structure, see
Table 4-3. For details about the code example,
see Code Example of apis Parameters.
● If model_type is set to Image, the AI

application is created using a custom image.
● When model_type is not Image, only one API

whose request path is / can be declared in
apis because the preconfigured AI engine
exposes only one inference API whose request
path is /.

dependen
cies

No depen
dency
array

Package on which the model inference code
depends, which is structure data.
Model developers need to provide the package
name, installation mode, and version constraints.
Only the pip installation mode is supported.
Table 4-6 describes the dependency array.
If the model package does not contain the
customize_service.py file, you do not need to set
this parameter. Dependency packages cannot be
installed for custom image models.

health No healt
h
data
struct
ure

Configuration of an image health interface. This
parameter is mandatory only when model_type
is set to Image.
If services cannot be interrupted during a rolling
upgrade, a health check API must be provided for
ModelArts to call. For details about the health
data structure, see Table 4-8.

Table 4-2 metrics object description

Paramete
r

Mand
atory

Data
Type

Description

f1 No Numb
er

F1 score. The value is rounded to 17 decimal
places.

recall No Numb
er

Recall rate. The value is rounded to 17 decimal
places.

precision No Numb
er

Precision. The value is rounded to 17 decimal
places.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 65

Paramete
r

Mand
atory

Data
Type

Description

accuracy No Numb
er

Accuracy. The value is rounded to 17 decimal
places.

Table 4-3 api array

Paramet
er

Manda
tory

Data
Type

Description

url No String Request path. The default value is a slash (/). For
a custom image model (model_type is Image),
set this parameter to the actual request path
exposed in the image. For a non-custom image
model (model_type is not Image), the URL can
only be /.

method No String Request method. The default value is POST.

request No Object Request body. For details, see Table 4-4.

response No Object Response body. For details, see Table 4-5.

Table 4-4 request description

Paramet
er

Mandat
ory

Data
Type

Description

Content-
type

No for
real-time
services
Yes for
batch
services

String Data is sent in a specified content format. The
default value is application/json.
The options are as follows:
● application/json: JSON data is uploaded.
● multipart/form-data: A file is uploaded.
NOTE

For machine learning models, only application/json
is supported.

data No for
real-time
services
Yes for
batch
services

String The request body is described in JSON schema.
For details about the parameter description,
see the official guide.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 66

https://json-schema.org/understanding-json-schema/reference/array.html

Table 4-5 response description

Paramet
er

Mandat
ory

Data
Type

Description

Content-
type

No for
real-time
services
Yes for
batch
services

String Data is sent in a specified content format. The
default value is application/json.
NOTE

For machine learning models, only application/json
is supported.

data No for
real-time
services
Yes for
batch
services

String The response body is described in JSON
schema. For details about the parameter
description, see the official guide.

Table 4-6 dependency array

Parameter Mandatory Data Type Description

installer Yes String Installation method. Only pip is
supported.

packages Yes package array Dependency package collection.
For details about the package
structure array, see Table 4-7.

Table 4-7 package array

Parameter Mandatory Type Description

package_na
me

Yes String Dependency package name.
Chinese characters and special
characters (&!'"<>=) are not
allowed.

package_ver
sion

No String Dependency package version. If
the dependency package does
not rely on package versions,
leave this field blank. Chinese
characters and special characters
(&!'"<>=) are not allowed.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 67

https://json-schema.org/understanding-json-schema/reference/array.html

Parameter Mandatory Type Description

restraint No String Version restriction. This
parameter is mandatory only
when package_version is
configured. Possible values are
EXACT, ATLEAST, and ATMOST.
● EXACT indicates that a

specified version is installed.
● ATLEAST indicates that the

version of the installation
package is not earlier than
the specified version.

● ATMOST indicates that the
version of the installation
package is not later than the
specified version.
NOTE

● If there are specific
requirements on the version,
preferentially use EXACT. If
EXACT conflicts with the
system installation packages,
you can select ATLEAST.

● If there is no specific
requirement on the version,
retain only the
package_name parameter
and leave restraint and
package_version blank.

Table 4-8 health data structure description

Parameter Mandatory Type Description

check_meth
od

Yes String Health check method. The value
can be HTTP or EXEC.
● HTTP: Use an HTTP request.
● EXEC: Execute a command.

command No String Health check command. This
parameter is mandatory when
check_method is set to EXEC.

url No String Request URL of a health check
API. This parameter is
mandatory when check_method
is set to HTTP.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 68

Parameter Mandatory Type Description

protocol No String Request protocol of a health
check API. The default value is
http. This parameter is
mandatory when check_method
is set to HTTP.

initial_delay
_seconds

No String Delay for initializing the health
check.

timeout_sec
onds

No String Health check timeout.

period_seco
nds

Yes String Health check period, in seconds.
Enter an integer greater than 0
and no more than 2147483647.

failure_thres
hold

Yes String Maximum number of health
check failures. Enter an integer
greater than 0 and no more than
2147483647.

Code Example of apis Parameters
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [
 {
 "type": "string"
 }
]
 }
 }
 }
 }
}]

Example of the Object Detection Model Configuration File
The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 69

● Model input
Key: images
Value: image files

● Model output
{
 "detection_classes": [
 "face",
 "arm"
],
 "detection_boxes": [
 [
 33.6,
 42.6,
 104.5,
 203.4
],
 [
 103.1,
 92.8,
 765.6,
 945.7
]
],
 "detection_scores": [0.99, 0.73]
}

● Configuration file
{
 "model_type": "TensorFlow",
 "model_algorithm": "object_detection",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "detection_classes": {
 "type": "array",
 "items": [{
 "type": "string"
 }]
 },
 "detection_boxes": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 4,
 "maxItems": 4,
 "items": [{

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 70

 "type": "number"
 }]
 }]
 },
 "detection_scores": {
 "type": "array",
 "items": [{
 "type": "number"
 }]
 }
 }
 }
 }
 }],
 "dependencies": [{
 "installer": "pip",
 "packages": [{
 "restraint": "EXACT",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "EXACT",
 "package_version": "5.2.0",
 "package_name": "Pillow"
 }
]
 }]
}

Example of the Image Classification Model Configuration File

The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
Key: images
Value: image files

● Model output
{
 "predicted_label": "flower",
 "scores": [
 ["rose", 0.99],
 ["begonia", 0.01]
]
}

● Configuration file
{
 "model_type": "TensorFlow",
 "model_algorithm": "image_classification",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 71

 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "predicted_label": {
 "type": "string"
 },
 "scores": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [
 {
 "type": "string"
 },
 {
 "type": "number"
 }
]
 }]
 }
 }
 }
 }
 }],
 "dependencies": [{
 "installer": "pip",
 "packages": [{
 "restraint": "ATLEAST",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "",
 "package_version": "",
 "package_name": "Pillow"
 }
]
 }]
}

The following code uses the MindSpore engine as an example. You can modify the
model_type parameter based on the type of the engine you use.

● Model input
Key: images
Value: image files

● Model output
"[[-2.404526 -3.0476532 -1.9888215 0.45013925 -1.7018927 0.40332815\n -7.1861157
11.290332 -1.5861531 5.7887416]]"

● Configuration file
{
 "model_algorithm": "image_classification",
 "model_type": "MindSpore",
 "metrics": {
 "f1": 0.124555,
 "recall": 0.171875,
 "precision": 0.0023493892851938493,

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 72

 "accuracy": 0.00746268656716417
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [{
 "type": "string"
 }]
 }
 }
 }
 }
 }
],
 "dependencies": []
 }

Example of the Predictive Analytics Model Configuration File
The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
{
 "data": {
 "req_data": [
 {
 "buying_price": "high",
 "maint_price": "high",
 "doors": "2",
 "persons": "2",
 "lug_boot": "small",
 "safety": "low",
 "acceptability": "acc"
 },
 {
 "buying_price": "high",
 "maint_price": "high",
 "doors": "2",
 "persons": "2",
 "lug_boot": "small",
 "safety": "low",
 "acceptability": "acc"
 }
]
 }
}

● Model output
{
 "data": {

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 73

 "resp_data": [
 {
 "predict_result": "unacc"
 },
 {
 "predict_result": "unacc"
 }
]
 }
}

● Configuration file

NO TE

In the code, the data parameter in the request and response structures is described in
JSON Schema. The content in data and properties corresponds to the model input
and output.

{
 "model_type": "TensorFlow",
 "model_algorithm": "predict_analysis",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "items": [
 {
 "type": "object",
 "properties": {}
 }
],
 "type": "array"
 }
 }
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "resp_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {}
 }
]

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 74

 }
 }
 }
 }
 }
 }
 }
],
 "dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "restraint": "EXACT",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "EXACT",
 "package_version": "5.2.0",
 "package_name": "Pillow"
 }
]
 }
]
}

Example of the Custom Image Model Configuration File
The model input and output are similar to those in Example of the Object
Detection Model Configuration File.

● If the input is an image, the request example is as follows.
In the example, a model prediction request containing the parameter images
with the parameter type of file is received. For this example, the file upload
button is displayed on the inference page, and the inference is performed in
file format.
{
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
}

● If the input is JSON data, the request example is as follows.
In this example, the model prediction JSON request body is received. In the
request, there is only one prediction request containing the parameter input
with the parameter type of string. On the inference page, a text box is
displayed for you to enter the prediction request.
{
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "input": {
 "type": "string"
 }
 }
 }
}

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 75

A complete request example is as follows:

{
 "model_algorithm": "image_classification",
 "model_type": "Image",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "required": [
 "predicted_label",
 "scores"
],
 "properties": {
 "predicted_label": {
 "type": "string"
 },
 "scores": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [{
 "type": "string"
 },
 {
 "type": "number"
 }
]
 }]
 }
 }
 }
 }
 }]
}

Example of the Machine Learning Model Configuration File
The following uses XGBoost as an example:

● Model input
{
 "req_data": [
 {
 "sepal_length": 5,
 "sepal_width": 3.3,

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 76

 "petal_length": 1.4,
 "petal_width": 0.2
 },
 {
 "sepal_length": 5,
 "sepal_width": 2,
 "petal_length": 3.5,
 "petal_width": 1
 },
 {
 "sepal_length": 6,
 "sepal_width": 2.2,
 "petal_length": 5,
 "petal_width": 1.5
 }
]
}

● Model output
{
 "resp_data": [
 {
 "predict_result": "Iris-setosa"
 },
 {
 "predict_result": "Iris-versicolor"
 }
]
}

● Configuration file
{
 "model_type": "XGBoost",
 "model_algorithm": "xgboost_iris_test",
 "runtime": "python2.7",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "items": [
 {
 "type": "object",
 "properties": {}
 }
],
 "type": "array"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "resp_data": {
 "type": "array",
 "items": [

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 77

 {
 "type": "object",
 "properties": {
 "predict_result": {}
 }
 }
]
 }
 }
 }
 }
 }
]
}

Example of a Model Configuration File Using a Custom Dependency Package
The following example defines the NumPy 1.16.4 dependency environment.

{
 "model_algorithm": "image_classification",
 "model_type": "TensorFlow",
 "runtime": "python3.6",
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [
 {
 "type": "string"
 }
]
 }
 }
 }
 }
 }
],
 "metrics": {
 "f1": 0.124555,
 "recall": 0.171875,
 "precision": 0.00234938928519385,
 "accuracy": 0.00746268656716417
 },
 "dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "restraint": "EXACT",

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 78

 "package_version": "1.16.4",
 "package_name": "numpy"
 }
]
 }
]
}

4.1.3 Specifications for Writing Model Inference Code
This section describes the general method of editing model inference code in
ModelArts. This section also provides an inference code example for the
TensorFlow engine and an example of customizing the inference logic in the
inference script.

Due to the limitation of API Gateway, the duration of a single prediction in
ModelArts cannot exceed 40s. The model inference code must be logically clear
and concise for satisfactory inference performance.

Specifications for Compiling Inference Code
1. In the model inference code file customize_service.py, add a child model

class. This child model class inherits properties from its parent model class.
For details about the import statements of different types of parent model
classes, see Table 4-9.

Table 4-9 Import statements of different types of parent model classes

Model Type Parent Class Import Statement

TensorFlow TfServingBaseService from model_service.tfserving_model_service
import TfServingBaseService

PyTorch PTServingBaseService from model_service.pytorch_model_service
import PTServingBaseService

2. The following methods can be rewritten:

Table 4-10 Methods to be rewritten

Method Description

__init__(self,
model_name,
model_path)

Initialization method, which is suitable for models
created based on deep learning frameworks. Models
and labels are loaded using this method. This method
must be rewritten for models based on PyTorch and
Caffe to implement the model loading logic.

__init__(self,
model_path)

Initialization method, which is suitable for models
created based on machine learning frameworks. The
model path (self.model_path) is initialized using this
method. In Spark_MLlib, this method also initializes
SparkSession (self.spark).

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 79

Method Description

_preprocess(self,
data)

Preprocess method, which is called before an inference
request and is used to convert the original request data
of an API into the expected input data of a model

_inference(self,
data)

Inference request method. You are advised not to
rewrite the method because once the method is
rewritten, the built-in inference process of ModelArts
will be overwritten and the custom inference logic will
run.

_postprocess(self,
data)

Postprocess method, which is called after an inference
request is complete and is used to convert the model
output to the API output

NO TE

● You can choose to rewrite the preprocess and postprocess methods to implement
preprocessing of the API input and postprocessing of the inference output.

● Rewriting the init method of the parent model class may cause an AI application to
run abnormally.

3. The attribute that can be used is the local path where the model resides. The
attribute name is self.model_path. In addition, PySpark-based models can use
self.spark to obtain the SparkSession object in customize_service.py.

NO TE

An absolute path is required for reading files in the inference code. You can obtain the
local path of the model from the self.model_path attribute.

● When TensorFlow, Caffe, or MXNet is used, self.model_path indicates the path of
the model file. See the following example:
Store the label.json file in the model directory. The following information is read:
with open(os.path.join(self.model_path, 'label.json')) as f:
 self.label = json.load(f)

● When PyTorch, Scikit_Learn, or PySpark is used, self.model_path indicates the path
of the model file. See the following example:
Store the label.json file in the model directory. The following information is read:
dir_path = os.path.dirname(os.path.realpath(self.model_path))
with open(os.path.join(dir_path, 'label.json')) as f:
 self.label = json.load(f)

4. data imported through the API for pre-processing, actual inference request,
and post-processing can be multipart/form-data or application/json.
– multipart/form-data request

curl -X POST \
 <modelarts-inference-endpoint> \
 -F image1=@cat.jpg \
 -F images2=@horse.jpg

The corresponding input data is as follows:
[
 {
 "image1":{
 "cat.jpg":"<cat.jpg file io>"
 }
 },

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 80

 {
 "image2":{
 "horse.jpg":"<horse.jpg file io>"
 }
 }
]

– application/json request
 curl -X POST \
 <modelarts-inference-endpoint> \
 -d '{
 "images":"base64 encode image"
 }'

The corresponding input data is python dict.
 {
 "images":"base64 encode image"
 }

TensorFlow Inference Script Example
The following is an example of TensorFlow MnistService. For details about the
inference code of other engines, see PyTorch .
● Inference code

from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):

 def _preprocess(self, data):
 preprocessed_data = {}

 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1, 784))
 preprocessed_data[k] = image1

 return preprocessed_data

 def _postprocess(self, data):

 infer_output = {}

 for output_name, result in data.items():

 infer_output["mnist_result"] = result[0].index(max(result[0]))

 return infer_output

● Request
curl -X POST \ Real-time service address \ -F images=@test.jpg

● Response
{"mnist_result": 7}

The preceding code example resizes images imported to the user's form to adapt
to the model input shape. The 32×32 image is read from the Pillow library and
resized to 1×784 to match the model input. In subsequent processing, convert the
model output into a list for the RESTful API to display.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 81

XGBoost Inference Script Example
For details about the inference code of other machine learning engines, see
PySpark and Scikit-learn.

coding:utf-8
import collections
import json
import xgboost as xgb
from model_service.python_model_service import XgSklServingBaseService

class UserService(XgSklServingBaseService):

 # request data preprocess
 def _preprocess(self, data):
 list_data = []
 json_data = json.loads(data, object_pairs_hook=collections.OrderedDict)
 for element in json_data["data"]["req_data"]:
 array = []
 for each in element:
 array.append(element[each])
 list_data.append(array)
 return list_data

 # predict
 def _inference(self, data):
 xg_model = xgb.Booster(model_file=self.model_path)
 pre_data = xgb.DMatrix(data)
 pre_result = xg_model.predict(pre_data)
 pre_result = pre_result.tolist()
 return pre_result

 # predict result process
 def _postprocess(self, data):
 resp_data = []
 for element in data:
 resp_data.append({"predict_result": element})
 return resp_data

Inference Script Example of the Custom Inference Logic
Customize a dependency package in the configuration file by referring to Example
of a Model Configuration File Using a Custom Dependency Package. Then, use
the following code example to load the model in saved_model format for
inference.

NO TE

The logging module of Python used by the base inference image uses the default log level
Warning. Only warning logs can be queried by default. To query INFO logs, set the log level
to INFO in the code.

-*- coding: utf-8 -*-
import json
import os
import threading
import numpy as np
import tensorflow as tf
from PIL import Image
from model_service.tfserving_model_service import TfServingBaseService
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class MnistService(TfServingBaseService):

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 82

 def __init__(self, model_name, model_path):
 self.model_name = model_name
 self.model_path = model_path
 self.model_inputs = {}
 self.model_outputs = {}

 # The label file can be loaded here and used in the post-processing function.
 # Directories for storing the label.txt file on OBS and in the model package

 # with open(os.path.join(self.model_path, 'label.txt')) as f:
 # self.label = json.load(f)

 # Load the model in saved_model format in non-blocking mode to prevent blocking timeout.
 thread = threading.Thread(target=self.get_tf_sess)
 thread.start()

 def get_tf_sess(self):
 # Load the model in saved_model format.
 # The session will be reused. Do not use the with statement.
 sess = tf.Session(graph=tf.Graph())
 meta_graph_def = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING],
self.model_path)
 signature_defs = meta_graph_def.signature_def
 self.sess = sess
 signature = []

 # only one signature allowed
 for signature_def in signature_defs:
 signature.append(signature_def)
 if len(signature) == 1:
 model_signature = signature[0]
 else:
 logger.warning("signatures more than one, use serving_default signature")
 model_signature = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY

 logger.info("model signature: %s", model_signature)

 for signature_name in meta_graph_def.signature_def[model_signature].inputs:
 tensorinfo = meta_graph_def.signature_def[model_signature].inputs[signature_name]
 name = tensorinfo.name
 op = self.sess.graph.get_tensor_by_name(name)
 self.model_inputs[signature_name] = op

 logger.info("model inputs: %s", self.model_inputs)

 for signature_name in meta_graph_def.signature_def[model_signature].outputs:
 tensorinfo = meta_graph_def.signature_def[model_signature].outputs[signature_name]
 name = tensorinfo.name
 op = self.sess.graph.get_tensor_by_name(name)
 self.model_outputs[signature_name] = op

 logger.info("model outputs: %s", self.model_outputs)

 def _preprocess(self, data):
 # Two request modes using HTTPS
 # 1. The request in form-data file format is as follows: data = {"Request key value":{"File
name":<File io>}}
 # 2. Request in JSON format is as follows: data = json.loads("JSON body transferred by the API")
 preprocessed_data = {}

 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1, 28, 28))
 preprocessed_data[k] = image1

 return preprocessed_data

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 83

 def _inference(self, data):
 feed_dict = {}
 for k, v in data.items():
 if k not in self.model_inputs.keys():
 logger.error("input key %s is not in model inputs %s", k, list(self.model_inputs.keys()))
 raise Exception("input key %s is not in model inputs %s" % (k, list(self.model_inputs.keys())))
 feed_dict[self.model_inputs[k]] = v

 result = self.sess.run(self.model_outputs, feed_dict=feed_dict)
 logger.info('predict result : ' + str(result))
 return result

 def _postprocess(self, data):
 infer_output = {"mnist_result": []}
 for output_name, results in data.items():

 for result in results:
 infer_output["mnist_result"].append(np.argmax(result))

 return infer_output

 def __del__(self):
 self.sess.close()

NO TE

To load models that are not supported by ModelArts or multiple models, specify the
loading path using the __init__ method. Example code:
-*- coding: utf-8 -*-
import os
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):
 def __init__(self, model_name, model_path):
 # Obtain the path to the model folder.
 root = os.path.dirname(os.path.abspath(__file__))
 # test.onnx is the name of the model file to be loaded and must be stored in the model folder.
 self.model_path = os.path.join(root, test.onnx)

 # Loading multiple models, for example, test2.onnx
 # self.model_path2 = os.path.join(root, test2.onnx)

4.2 Examples of Custom Scripts

4.2.1 TensorFlow
There are two types of TensorFlow APIs, Keras and tf. They use different code for
training and saving models, but the same code for inference.

Training a Model (Keras API)
from keras.models import Sequential
model = Sequential()
from keras.layers import Dense
import tensorflow as tf

Import a training dataset.
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

print(x_train.shape)

from keras.layers import Dense

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 84

from keras.models import Sequential
import keras
from keras.layers import Dense, Activation, Flatten, Dropout

Define a model network.
model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(units=5120,activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(units=10, activation='softmax'))

Define an optimizer and loss functions.
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.summary()
Train the model.
model.fit(x_train, y_train, epochs=2)
Evaluate the model.
model.evaluate(x_test, y_test)

Saving a Model (Keras API)
from keras import backend as K

K.get_session().run(tf.global_variables_initializer())

Define the inputs and outputs of the prediction API.
The key values of the inputs and outputs dictionaries are used as the index keys for the input and output
tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
predict_signature = tf.saved_model.signature_def_utils.predict_signature_def(
 inputs={"images" : model.input},
 outputs={"scores" : model.output}
)

Define a save path.
builder = tf.saved_model.builder.SavedModelBuilder('./mnist_keras/')

builder.add_meta_graph_and_variables(

 sess = K.get_session(),
 # The tf.saved_model.tag_constants.SERVING tag needs to be defined for inference and deployment.
 tags=[tf.saved_model.tag_constants.SERVING],
 """
 signature_def_map: Only single items can exist, or the corresponding key needs to be defined as follows:
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
 """
 signature_def_map={
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
 predict_signature
 }

)
builder.save()

Training a Model (tf API)
from __future__ import print_function

import gzip
import os
import urllib

import numpy
import tensorflow as tf
from six.moves import urllib

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 85

Training data is obtained from the Yann LeCun official website http://yann.lecun.com/exdb/mnist/.
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000

def maybe_download(filename, work_directory):
 """Download the data from Yann's website, unless it's already here."""
 if not os.path.exists(work_directory):
 os.mkdir(work_directory)
 filepath = os.path.join(work_directory, filename)
 if not os.path.exists(filepath):
 filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
 statinfo = os.stat(filepath)
 print('Successfully downloaded %s %d bytes.' % (filename, statinfo.st_size))
 return filepath

def _read32(bytestream):
 dt = numpy.dtype(numpy.uint32).newbyteorder('>')
 return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):
 """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
 print('Extracting %s' % filename)
 with gzip.open(filename) as bytestream:
 magic = _read32(bytestream)
 if magic != 2051:
 raise ValueError(
 'Invalid magic number %d in MNIST image file: %s' %
 (magic, filename))
 num_images = _read32(bytestream)
 rows = _read32(bytestream)
 cols = _read32(bytestream)
 buf = bytestream.read(rows * cols * num_images)
 data = numpy.frombuffer(buf, dtype=numpy.uint8)
 data = data.reshape(num_images, rows, cols, 1)
 return data

def dense_to_one_hot(labels_dense, num_classes=10):
 """Convert class labels from scalars to one-hot vectors."""
 num_labels = labels_dense.shape[0]
 index_offset = numpy.arange(num_labels) * num_classes
 labels_one_hot = numpy.zeros((num_labels, num_classes))
 labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
 return labels_one_hot

def extract_labels(filename, one_hot=False):
 """Extract the labels into a 1D uint8 numpy array [index]."""
 print('Extracting %s' % filename)
 with gzip.open(filename) as bytestream:
 magic = _read32(bytestream)
 if magic != 2049:
 raise ValueError(
 'Invalid magic number %d in MNIST label file: %s' %
 (magic, filename))
 num_items = _read32(bytestream)
 buf = bytestream.read(num_items)
 labels = numpy.frombuffer(buf, dtype=numpy.uint8)
 if one_hot:
 return dense_to_one_hot(labels)
 return labels

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 86

class DataSet(object):
 """Class encompassing test, validation and training MNIST data set."""

 def __init__(self, images, labels, fake_data=False, one_hot=False):
 """Construct a DataSet. one_hot arg is used only if fake_data is true."""

 if fake_data:
 self._num_examples = 10000
 self.one_hot = one_hot
 else:
 assert images.shape[0] == labels.shape[0], (
 'images.shape: %s labels.shape: %s' % (images.shape,
 labels.shape))
 self._num_examples = images.shape[0]

 # Convert shape from [num examples, rows, columns, depth]
 # to [num examples, rows*columns] (assuming depth == 1)
 assert images.shape[3] == 1
 images = images.reshape(images.shape[0],
 images.shape[1] * images.shape[2])
 # Convert from [0, 255] -> [0.0, 1.0].
 images = images.astype(numpy.float32)
 images = numpy.multiply(images, 1.0 / 255.0)
 self._images = images
 self._labels = labels
 self._epochs_completed = 0
 self._index_in_epoch = 0

 @property
 def images(self):
 return self._images

 @property
 def labels(self):
 return self._labels

 @property
 def num_examples(self):
 return self._num_examples

 @property
 def epochs_completed(self):
 return self._epochs_completed

 def next_batch(self, batch_size, fake_data=False):
 """Return the next `batch_size` examples from this data set."""
 if fake_data:
 fake_image = [1] * 784
 if self.one_hot:
 fake_label = [1] + [0] * 9
 else:
 fake_label = 0
 return [fake_image for _ in range(batch_size)], [
 fake_label for _ in range(batch_size)
]
 start = self._index_in_epoch
 self._index_in_epoch += batch_size
 if self._index_in_epoch > self._num_examples:
 # Finished epoch
 self._epochs_completed += 1
 # Shuffle the data
 perm = numpy.arange(self._num_examples)
 numpy.random.shuffle(perm)
 self._images = self._images[perm]
 self._labels = self._labels[perm]
 # Start next epoch
 start = 0

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 87

 self._index_in_epoch = batch_size
 assert batch_size <= self._num_examples
 end = self._index_in_epoch
 return self._images[start:end], self._labels[start:end]

def read_data_sets(train_dir, fake_data=False, one_hot=False):
 """Return training, validation and testing data sets."""

 class DataSets(object):
 pass

 data_sets = DataSets()

 if fake_data:
 data_sets.train = DataSet([], [], fake_data=True, one_hot=one_hot)
 data_sets.validation = DataSet([], [], fake_data=True, one_hot=one_hot)
 data_sets.test = DataSet([], [], fake_data=True, one_hot=one_hot)
 return data_sets

 local_file = maybe_download(TRAIN_IMAGES, train_dir)
 train_images = extract_images(local_file)

 local_file = maybe_download(TRAIN_LABELS, train_dir)
 train_labels = extract_labels(local_file, one_hot=one_hot)

 local_file = maybe_download(TEST_IMAGES, train_dir)
 test_images = extract_images(local_file)

 local_file = maybe_download(TEST_LABELS, train_dir)
 test_labels = extract_labels(local_file, one_hot=one_hot)

 validation_images = train_images[:VALIDATION_SIZE]
 validation_labels = train_labels[:VALIDATION_SIZE]
 train_images = train_images[VALIDATION_SIZE:]
 train_labels = train_labels[VALIDATION_SIZE:]

 data_sets.train = DataSet(train_images, train_labels)
 data_sets.validation = DataSet(validation_images, validation_labels)
 data_sets.test = DataSet(test_images, test_labels)
 return data_sets

training_iteration = 1000

modelarts_example_path = './modelarts-mnist-train-save-deploy-example'

export_path = modelarts_example_path + '/model/'
data_path = './'

print('Training model...')
mnist = read_data_sets(data_path, one_hot=True)
sess = tf.InteractiveSession()
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), }
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name
y_ = tf.placeholder('float', shape=[None, 10])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
values, indices = tf.nn.top_k(y, 10)
table = tf.contrib.lookup.index_to_string_table_from_tensor(
 tf.constant([str(i) for i in range(10)]))
prediction_classes = table.lookup(tf.to_int64(indices))
for _ in range(training_iteration):
 batch = mnist.train.next_batch(50)

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 88

 train_step.run(feed_dict={x: batch[0], y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print('training accuracy %g' % sess.run(
 accuracy, feed_dict={
 x: mnist.test.images,
 y_: mnist.test.labels
 }))
print('Done training!')

Saving a Model (tf API)
Export the model.
The model needs to be saved using the saved_model API.
print('Exporting trained model to', export_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)

tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

Define the inputs and outputs of the prediction API.
The key values of the inputs and outputs dictionaries are used as the index keys for the input and output
tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
prediction_signature = (
 tf.saved_model.signature_def_utils.build_signature_def(
 inputs={'images': tensor_info_x},
 outputs={'scores': tensor_info_y},
 method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
 # Set tag to serve/tf.saved_model.tag_constants.SERVING.
 sess, [tf.saved_model.tag_constants.SERVING],
 signature_def_map={
 'predict_images':
 prediction_signature,
 },
 legacy_init_op=legacy_init_op)

builder.save()

print('Done exporting!')

Inference Code (Keras and tf APIs)
In the model inference code file customize_service.py, add a child model class
which inherits properties from its parent model class. For details about the import
statements of different types of parent model classes, see Table 4-9.
from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):

 # Match the model input with the user's HTTPS API input during preprocessing.
 # The model input corresponding to the preceding training part is {"images":<array>}.
 def _preprocess(self, data):

 preprocessed_data = {}
 images = []
 # Iterate the input data.
 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 89

 image1.resize((1,784))
 images.append(image1)
 # Return the numpy array.
 images = np.array(images,dtype=np.float32)
 # Perform batch processing on multiple input samples and ensure that the shape is the same as that
inputted during training.
 images.resize((len(data), 784))
 preprocessed_data['images'] = images
 return preprocessed_data

 # Processing logic of the inference for invoking the parent class.

 # The output corresponding to model saving in the preceding training part is {"scores":<array>}.
 # Postprocess the HTTPS output.
 def _postprocess(self, data):
 infer_output = {"mnist_result": []}
 # Iterate the model output.
 for output_name, results in data.items():
 for result in results:
 infer_output["mnist_result"].append(result.index(max(result)))
 return infer_output

4.2.2 PyTorch

Training a Model
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

Define a network structure.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
The second dimension of the input must be 784.
 self.hidden1 = nn.Linear(784, 5120, bias=False)
 self.output = nn.Linear(5120, 10, bias=False)

 def forward(self, x):
 x = x.view(x.size()[0], -1)
 x = F.relu((self.hidden1(x)))
 x = F.dropout(x, 0.2)
 x = self.output(x)
 return F.log_softmax(x)

def train(model, device, train_loader, optimizer, epoch):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 output = model(data)
 loss = F.cross_entropy(output, target)
 loss.backward()
 optimizer.step()
 if batch_idx % 10 == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))

def test(model, device, test_loader):
 model.eval()
 test_loss = 0
 correct = 0
 with torch.no_grad():

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 90

 for data, target in test_loader:
 data, target = data.to(device), target.to(device)
 output = model(data)
 test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
 pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
 correct += pred.eq(target.view_as(pred)).sum().item()

 test_loss /= len(test_loader.dataset)

 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
 test_loss, correct, len(test_loader.dataset),
 100. * correct / len(test_loader.dataset)))

device = torch.device("cpu")

batch_size=64

kwargs={}

train_loader = torch.utils.data.DataLoader(
 datasets.MNIST('.', train=True, download=True,
 transform=transforms.Compose([
 transforms.ToTensor()
])),
 batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
 datasets.MNIST('.', train=False, transform=transforms.Compose([
 transforms.ToTensor()
])),
 batch_size=1000, shuffle=True, **kwargs)

model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
optimizer = optim.Adam(model.parameters())

for epoch in range(1, 2 + 1):
 train(model, device, train_loader, optimizer, epoch)
 test(model, device, test_loader)

Saving a Model
The model must be saved using state_dict and can be deployed remotely.
torch.save(model.state_dict(), "pytorch_mnist/mnist_mlp.pt")

Inference Code

In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details
about the import statements of different types of parent model classes, see Table
4-9.

from PIL import Image
import log
from model_service.pytorch_model_service import PTServingBaseService
import torch.nn.functional as F

import torch.nn as nn
import torch
import json

import numpy as np

logger = log.getLogger(__name__)

import torchvision.transforms as transforms

Define model preprocessing.

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 91

infer_transformation = transforms.Compose([
 transforms.Resize((28,28)),
 # Transform to a PyTorch tensor.
 transforms.ToTensor()
])

import os

class PTVisionService(PTServingBaseService):

 def __init__(self, model_name, model_path):
 # Call the constructor of the parent class.
 super(PTVisionService, self).__init__(model_name, model_path)
 # Call the customized function to load the model.
 self.model = Mnist(model_path)
 # Load tags.
 self.label = [0,1,2,3,4,5,6,7,8,9]
 # Labels can also be loaded by label file.
 # Store the label.json file in the model directory. The following information is read:
 dir_path = os.path.dirname(os.path.realpath(self.model_path))
 with open(os.path.join(dir_path, 'label.json')) as f:
 self.label = json.load(f)

 def _preprocess(self, data):

 preprocessed_data = {}
 for k, v in data.items():
 input_batch = []
 for file_name, file_content in v.items():
 with Image.open(file_content) as image1:
 # Gray processing
 image1 = image1.convert("L")
 if torch.cuda.is_available():
 input_batch.append(infer_transformation(image1).cuda())
 else:
 input_batch.append(infer_transformation(image1))
 input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True)
 print(input_batch_var.shape)
 preprocessed_data[k] = input_batch_var

 return preprocessed_data

 def _postprocess(self, data):
 results = []
 for k, v in data.items():
 result = torch.argmax(v[0])
 result = {k: self.label[result]}
 results.append(result)
 return results

 def _inference(self, data):

 result = {}
 for k, v in data.items():
 result[k] = self.model(v)

 return result

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.hidden1 = nn.Linear(784, 5120, bias=False)
 self.output = nn.Linear(5120, 10, bias=False)

 def forward(self, x):
 x = x.view(x.size()[0], -1)

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 92

 x = F.relu((self.hidden1(x)))
 x = F.dropout(x, 0.2)
 x = self.output(x)
 return F.log_softmax(x)

def Mnist(model_path, **kwargs):
 # Generate a network.
 model = Net()
 # Load the model.
 if torch.cuda.is_available():
 device = torch.device('cuda')
 model.load_state_dict(torch.load(model_path, map_location="cuda:0"))
 else:
 device = torch.device('cpu')
 model.load_state_dict(torch.load(model_path, map_location=device))
 # CPU or GPU mapping
 model.to(device)
 # Declare an inference mode.
 model.eval()

 return model

4.2.3 XGBoost

Training and Saving a Model
import pandas as pd
import xgboost as xgb
from sklearn.model_selection import train_test_split

Prepare training data and setting parameters
iris = pd.read_csv('/home/ma-user/work/iris.csv')
X = iris.drop(['variety'],axis=1)
y = iris[['variety']]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234565)
params = {
 'booster': 'gbtree',
 'objective': 'multi:softmax',
 'num_class': 3,
 'gamma': 0.1,
 'max_depth': 6,
 'lambda': 2,
 'subsample': 0.7,
 'colsample_bytree': 0.7,
 'min_child_weight': 3,
 'silent': 1,
 'eta': 0.1,
 'seed': 1000,
 'nthread': 4,
}
plst = params.items()
dtrain = xgb.DMatrix(X_train, y_train)
num_rounds = 500
model = xgb.train(plst, dtrain, num_rounds)
model.save_model('/tmp/xgboost.m')

Before training, download the iris.csv dataset, decompress it, and upload it to
the /home/ma-user/work/ directory of the notebook instance. Download the
iris.csv dataset from https://gist.github.com/netj/8836201. For details about
how to upload a file to a notebook instance, see Upload Scenarios and Entries.

After the model is saved, it must be uploaded to the OBS directory before being
published. The config.json configuration and the customize_service.py inference
code must be included during the publishing. For details about how to compile

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 93

https://gist.github.com/netj/8836201
https://support.huaweicloud.com/eu/devtool-modelarts/modelarts_30_0044.html

config.json, see Specifications for Editing a Model Configuration File . For
details about inference code, see Inference Code.

Inference Code
In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details
about the import statements of different types of parent model classes, see Table
4-9.

coding:utf-8
import collections
import json
import xgboost as xgb
from model_service.python_model_service import XgSklServingBaseService
class UserService(XgSklServingBaseService):

 # request data preprocess
 def _preprocess(self, data):
 list_data = []
 json_data = json.loads(data, object_pairs_hook=collections.OrderedDict)
 for element in json_data["data"]["req_data"]:
 array = []
 for each in element:
 array.append(element[each])
 list_data.append(array)
 return list_data

 # predict
 def _inference(self, data):
 xg_model = xgb.Booster(model_file=self.model_path)
 pre_data = xgb.DMatrix(data)
 pre_result = xg_model.predict(pre_data)
 pre_result = pre_result.tolist()
 return pre_result

 # predict result process
 def _postprocess(self,data):
 resp_data = []
 for element in data:
 resp_data.append({"predictresult": element})
 return resp_data

4.2.4 PySpark

Training and Saving a Model
from pyspark.ml import Pipeline, PipelineModel
from pyspark.ml.linalg import Vectors
from pyspark.ml.classification import LogisticRegression

Prepare training data using tuples.
Prepare training data from a list of (label, features) tuples.
training = spark.createDataFrame([
 (1.0, Vectors.dense([0.0, 1.1, 0.1])),
 (0.0, Vectors.dense([2.0, 1.0, -1.0])),
 (0.0, Vectors.dense([2.0, 1.3, 1.0])),
 (1.0, Vectors.dense([0.0, 1.2, -0.5]))], ["label", "features"])

Create a training instance. The logistic regression algorithm is used for training.
Create a LogisticRegression instance. This instance is an Estimator.
lr = LogisticRegression(maxIter=10, regParam=0.01)

Train the logistic regression model.
Learn a LogisticRegression model. This uses the parameters stored in lr.
model = lr.fit(training)

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 94

Save the model to a local directory.
Save model to local path.
model.save("/tmp/spark_model")

After the model is saved, it must be uploaded to the OBS directory before being
published. The config.json configuration and the customize_service.py inference
code must be included during the publishing. For details about how to compile
config.json, see Specifications for Editing a Model Configuration File . For
details about inference code, see Inference Code.

Inference Code
In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details
about the import statements of different types of parent model classes, see Table
4-9.

coding:utf-8
import collections
import json
import traceback

import model_service.log as log
from model_service.spark_model_service import SparkServingBaseService
from pyspark.ml.classification import LogisticRegression

logger = log.getLogger(__name__)

class UserService(SparkServingBaseService):
 # Pre-process data.
 def _preprocess(self, data):
 logger.info("Begin to handle data from user data...")
 # Read data.
 req_json = json.loads(data, object_pairs_hook=collections.OrderedDict)
 try:
 # Convert data to the spark dataframe format.
 predict_spdf = self.spark.createDataFrame(pd.DataFrame(req_json["data"]["req_data"]))
 except Exception as e:
 logger.error("check your request data does meet the requirements ?")
 logger.error(traceback.format_exc())
 raise Exception("check your request data does meet the requirements ?")
 return predict_spdf

 # Perform model inference.
 def _inference(self, data):
 try:
 # Load a model file.
 predict_model = LogisticRegression.load(self.model_path)
 # Perform data inference.
 prediction_result = predict_model.transform(data)
 except Exception as e:
 logger.error(traceback.format_exc())
 raise Exception("Unable to load model and do dataframe transformation.")
 return prediction_result

 # Post-process data.
 def _postprocess(self, pre_data):
 logger.info("Get new data to respond...")
 predict_str = pre_data.toPandas().to_json(orient='records')
 predict_result = json.loads(predict_str)
 return predict_result

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 95

4.2.5 Scikit-learn

Training and Saving a Model
import json
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib
iris = pd.read_csv('/home/ma-user/work/iris.csv')
X = iris.drop(['variety'],axis=1)
y = iris[['variety']]
Create a LogisticRegression instance and train model
logisticRegression = LogisticRegression(C=1000.0, random_state=0)
logisticRegression.fit(X,y)
Save model to local path
joblib.dump(logisticRegression, '/tmp/sklearn.m')

Before training, download the iris.csv dataset, decompress it, and upload it to
the /home/ma-user/work/ directory of the notebook instance. Download the
iris.csv dataset from https://gist.github.com/netj/8836201. For details about
how to upload a file to a notebook instance, see Upload Scenarios and Entries.

After the model is saved, it must be uploaded to the OBS directory before being
published. The config.json and customize_service.py files must be contained
during publishing. For details about the definition method, see Introduction to
Model Package Specifications.

Inference Code
In the model inference code file customize_service.py, add a child model class.
This child model class inherits properties from its parent model class. For details
about the import statements of different types of parent model classes, see Table
4-9.

coding:utf-8
import collections
import json
from sklearn.externals import joblib
from model_service.python_model_service import XgSklServingBaseService

class UserService(XgSklServingBaseService):

 # request data preprocess
 def _preprocess(self, data):
 list_data = []
 json_data = json.loads(data, object_pairs_hook=collections.OrderedDict)
 for element in json_data["data"]["req_data"]:
 array = []
 for each in element:
 array.append(element[each])
 list_data.append(array)
 return list_data

 # predict
 def _inference(self, data):
 sk_model = joblib.load(self.model_path)
 pre_result = sk_model.predict(data)
 pre_result = pre_result.tolist()
 return pre_result

 # predict result process
 def _postprocess(self,data):

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 96

https://gist.github.com/netj/8836201
https://support.huaweicloud.com/eu/devtool-modelarts/modelarts_30_0044.html

 resp_data = []
 for element in data:
 resp_data.append({"predictresult": element})
 return resp_data

ModelArts
Inference Deployment 4 Inference Specifications

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 97

5 ModelArts Monitoring on Cloud Eye

5.1 ModelArts Metrics

Description

The cloud service platform provides Cloud Eye to help you better understand the
status of your ModelArts real-time services and models. You can use Cloud Eye to
automatically monitor your ModelArts real-time services and model loads in real
time and manage alarms and notifications so that you can obtain the
performance metrics of ModelArts and models.

Namespace

SYS.ModelArts

Monitoring Metrics

Table 5-1 ModelArts metrics

Metric ID Metric
Name

Description Value
Range

Monitored
Entity

Monitorin
g Interval

cpu_usag
e

CPU
Usage

CPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

mem_usa
ge

Memory
Usage

Memory usage
of ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

gpu_util GPU
Usage

GPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 98

Metric ID Metric
Name

Description Value
Range

Monitored
Entity

Monitorin
g Interval

successful
ly_called_t
imes

Number
of
Successfu
l Calls

Times that
ModelArts has
been
successfully
called
Unit: times/
minute

≥ counts/
minute

ModelArts
models
ModelArts
real-time
services

1 minute

failed_call
ed_times

Number
of Failed
Calls

Times that
ModelArts failed
to be called
Unit: times/
minute

≥ counts/
minute

ModelArts
models
ModelArts
real-time
services

1 minute

total_calle
d_times

Total
Calls

Times that
ModelArts is
called
Unit: times/
minute

≥ counts/
minute

ModelArts
model
loads
ModelArts
real-time
services

1 minute

If a measurement object has multiple measurement dimensions, all the
measurement dimensions are mandatory when you use an API to query
monitoring metrics.
● The following provides an example of using the multi-dimensional dim to

query a single monitoring metric:
dim.0=service_id,530cd6b0-86d7-4818-837f-935f6a27414d&dim.1="model_id,
3773b058-5b4f-4366-9035-9bbd9964714a

● The following provides an example of using the multi-dimensional dim to
query monitoring metrics in batches:
"dimensions": [
{
"name": "service_id",
"value": "530cd6b0-86d7-4818-837f-935f6a27414d"
}
{
"name": "model_id",
"value": "3773b058-5b4f-4366-9035-9bbd9964714a"
}
]

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 99

Dimensions

Table 5-2 Dimension description

Key Value

service_id Real-time service ID

model_id Model ID

5.2 Setting Alarm Rules

Scenario

Setting alarm rules allows you to customize the monitored objects and notification
policies so that you can know the status of ModelArts real-time services and
models in a timely manner.

An alarm rule includes the alarm rule name, monitored object, metric, threshold,
monitoring interval, and whether to send a notification. This section describes how
to set alarm rules for ModelArts services and models.

NO TE

Only real-time services in the Running status can be interconnected with CES.

Prerequisites
● A ModelArts real-time service has been created.
● ModelArts monitoring has been enabled on Cloud Eye. To do so, log in to the

Cloud Eye console. On the Cloud Eye page, click Custom Monitoring. Then,
enable ModelArts monitoring as prompted.

Procedure

Set an alarm rule in any of the following ways:

● Set an alarm rule for all ModelArts services.
● Set an alarm rule for a ModelArts service.
● Set an alarm rule for a model version.
● Set an alarm rule for a metric of a service or model version.

Method 1: Setting an Alarm Rule for All ModelArts Services
1. Log in to the management console.
2. On the Service List, click Cloud Eye under Management & Governance.
3. In the navigation pane on the left, choose Alarm Management > Alarm

Rules and click Create Alarm Rule.

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 100

4. On the Create Alarm Rule page, set Resource Type to ModelArts,
Dimension to Service, and Method to Configure manually, and set alarm
policies. Then, confirm settings and click Create.

Figure 5-1 Create Alarm Rule

Figure 5-2 Creating an alarm rule for ModelArts

Method 2: Setting an Alarm Rule for a Single Service
1. Log in to the management console.
2. On the Service List, click Cloud Eye under Management & Governance.
3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.
4. Select a real-time service for which you want to create an alarm rule and click

Create Alarm Rule in the Operation column.
5. On the Create Alarm Rule page, create an alarm rule for ModelArts real-time

services and models as prompted.

Figure 5-3 Create Alarm Rule

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 101

Figure 5-4 Creating an alarm rule for a single service

Method 3: Setting an Alarm Rule for a Model Version
1. Log in to the management console.
2. On the Service List, click Cloud Eye under Management & Governance.
3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.
4. Click the down arrow next to the target real-time service name. Then, click

Create Alarm Rule in the Operation column of the target version.
5. On the Create Alarm Rule page, create an alarm rule for model loads as

prompted.

Figure 5-5 Create Alarm Rule

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 102

Figure 5-6 Creating an alarm rule for a model version

Method 4: Setting an Alarm Rule for a Metric of a Service or Model Version
1. Log in to the management console.
2. On the Service List, click Cloud Eye under Management & Governance.
3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.
4. Click the down arrow next to the target real-time service name. Then, click

the target version and view alarm rule details.
5. On the alarm rule details page, click the plus sign (+) in the upper right

corner of a metric and set an alarm rule for the metric.

Figure 5-7 Clicking the plus sign (+)

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 103

Figure 5-8 Creating an alarm rule for a metric

5.3 Viewing Monitoring Metrics

Scenario
Cloud Eye on the cloud service platform monitors the status of ModelArts real-
time services and model loads. You can obtain the monitoring metrics of each
ModelArts real-time service and model loads on the management console.
Monitored data requires a period of time for transmission and display. The status
of ModelArts displayed on the Cloud Eye console is usually the status obtained 5
to 10 minutes before. You can view the monitored data of a newly created real-
time service 5 to 10 minutes later.

Prerequisites
● The ModelArts real-time service is running properly.
● Alarm rules have been configured on the Cloud Eye page. For details, see

Setting Alarm Rules.
● The real-time service has been properly running for at least 10 minutes.
● The monitored data and graphics are available for a new real-time service

after the service runs for at least 10 minutes.
● Cloud Eye does not display the metrics of a faulty or deleted real-time service.

The monitoring metrics can be viewed after the real-time service starts or
recovers.

Monitoring data is unavailable without alarm rules configured on Cloud Eye. For
details, see Setting Alarm Rules.

Procedure
1. Log in to the management console.
2. In the Service List, click Cloud Eye under Management & Governance.
3. In the left navigation pane, choose Cloud Service Monitoring > ModelArts.
4. View monitoring graphs.

– Viewing monitoring graphs of a real-time service: Click View Metric in
the Operation column.

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 104

– Viewing monitoring graphs of the model loads: Click next to the
target real-time service, and click View Metric in the Operation column
of the target model.

Figure 5-9 Viewing metrics

5. In the monitoring area, you can select a duration to view the monitoring data.
You can view the monitoring data in the recent 1 hour, 3 hours, or 12 hours.

To view the monitoring curve of a longer time range, click to enlarge the
graph.

ModelArts
Inference Deployment 5 ModelArts Monitoring on Cloud Eye

Issue 01 (2024-06-07) Copyright © Huawei Technologies Co., Ltd. 105

	Contents
	1 Introduction to Inference
	2 Managing AI Applications
	2.1 Introduction to AI Application Management
	2.2 Creating an AI Application
	2.2.1 Importing a Meta Model from a Training Job
	2.2.2 Importing a Meta Model from OBS
	2.2.3 Importing a Meta Model from a Container Image

	2.3 Viewing Details About an AI Application
	2.4 Managing AI Applications
	2.5 Viewing Events of an AI Application

	3 Deploying an AI Application as a Service
	3.1 Deploying AI Applications as Real-Time Services
	3.1.1 Deploying as a Real-Time Service
	3.1.2 Viewing Service Details
	3.1.3 Testing the Deployed Service
	3.1.4 Accessing Real-Time Services
	3.1.4.1 Accessing a Real-Time Service
	3.1.4.2 Authentication Mode
	3.1.4.2.1 Access Authenticated Using a Token

	3.1.4.3 Access Mode
	3.1.4.3.1 Accessing a Real-Time Service (Public Network Channel)
	3.1.4.3.2 Accessing a Real-Time Service (VPC Channel)
	3.1.4.3.3 Accessing a Real-Time Service (VPC High-Speed Channel)

	3.1.5 Maintaining Real-Time Services
	3.1.5.1 Scaling
	3.1.5.1.1 Overview
	3.1.5.1.2 Manual Scaling
	3.1.5.1.3 Auto Scaling

	3.2 Deploying AI Applications as Batch Services
	3.2.1 Deploying as a Batch Service
	3.2.2 Viewing the Batch Service Prediction Result

	3.3 Upgrading a Service
	3.4 Starting, Stopping, Deleting, or Restarting a Service
	3.5 Viewing Service Events

	4 Inference Specifications
	4.1 Model Package Specifications
	4.1.1 Introduction to Model Package Specifications
	4.1.2 Specifications for Editing a Model Configuration File
	4.1.3 Specifications for Writing Model Inference Code

	4.2 Examples of Custom Scripts
	4.2.1 TensorFlow
	4.2.2 PyTorch
	4.2.3 XGBoost
	4.2.4 PySpark
	4.2.5 Scikit-learn

	5 ModelArts Monitoring on Cloud Eye
	5.1 ModelArts Metrics
	5.2 Setting Alarm Rules
	5.3 Viewing Monitoring Metrics

